Skip to main content

Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing

  • Chapter
Fish Hearing and Bioacoustics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 877))

Abstract

Behavioral methods have been critical in the study of auditory perception and discrimination in fishes. In this chapter, we review some of the common methods used in fish psychoacoustics. We discuss associative methods, such as operant, avoidance, and classical conditioning, and their use in constructing audiograms, measuring frequency selectivity, and auditory stream segregation. We also discuss the measurement of innate behavioral responses, such as the acoustic startle response (ASR), prepulse inhibition (PPI), and phonotaxis, and their use in the assessment of fish hearing to determine auditory thresholds and in the testing of mechanisms for sound source localization. For each psychoacoustic method, we provide examples of their use and discuss the parameters and situations where such methods can be best utilized. In the case of the ASR, we show how this method can be used to construct and compare audiograms between two species of larval fishes, the three-spined stickleback (Gasterosteus aculeatus) and the zebrafish (Danio rerio). We also discuss considerations for experimental design with respect to stimulus presentation and threshold criteria and how these techniques can be used in future studies to investigate auditory perception in fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EE, Fernald RD (1985) Spectral sensitivity of the African cichlid fish, Haplochromis burtoni. J Comp Physiol A 157(2):247–253

    Article  CAS  PubMed  Google Scholar 

  • Amorim MCP (1996) Sound production in the blue-green damselfish, Chromis viridis (Cuvier, 1830) (Pomacentridae). Bioacoustics 6(4):265–272

    Article  Google Scholar 

  • Amorim MCP (2006) Diversity of sound production in fish. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Plymouth

    Google Scholar 

  • Aristotle (1984) The complete works of Aristotle: revised Oxford edition. English Edition: Barnes J. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Békésy GV (1947) A new audiometer. Acta Otolaryngol 35:411–422

    Article  Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW et al (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216:3504–3513

    Article  PubMed Central  PubMed  Google Scholar 

  • Bodnar DA, Bass, AH (1997) Temporal coding of concurrent acoustic signals in auditory midbrain. J Neurosci 17(19):7553–7564

    Google Scholar 

  • Branson K, Robie AA, Bender J et al (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6(6):451–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brantley RK, Bass AH (1994) Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish Porichthys notatus Girard (Teleostei, Batrachoididae). Ethology 96(3):213–232

    Article  Google Scholar 

  • Buerkle U (1967) An audiogram of the Atlantic Cod, Gadus morhua L. J Fish Res Board Can 24(11):2309–2319

    Article  Google Scholar 

  • Bull HO (1928) Studies on conditioned responses in fishes. Part I. J Mar Biol Assoc UK 15(02):485–533

    Article  Google Scholar 

  • Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210(14):2526–2539

    Article  PubMed  Google Scholar 

  • Buwalda RJA, Schuijf A, Hawkins AD (1983) Discrimination by the cod of sounds from opposing directions. J Comp Physiol A 150(2):175–184

    Article  Google Scholar 

  • Casper BM, Lobel PS, Yan HY (2003) The hearing sensitivity of the little skate, Raja erinacea: a comparison of two methods. Environ Biol Fish 68(4):371–379

    Article  Google Scholar 

  • Chapman CJ, Johnstone AD (1974) Some auditory discrimination experiments on marine fish. J Exp Biol 61(2):521–528

    CAS  PubMed  Google Scholar 

  • Cioni C, De Palma F, Stefanelli A (1989) Morphology of afferent synapses in the Mauthner cell of larval Xenopus laevis. J Comp Neurol 284(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Coffin AB, Zeddies DG, Fay RR et al (2014) Use of the swim bladder and lateral line in near-field sound source localization by fishes. J Exp Biol. doi:10.1242/jeb.093831

    PubMed  Google Scholar 

  • Cohen MJ, Winn HE (1967) Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus. J Exp Zool 165(3):355–369

    Article  CAS  PubMed  Google Scholar 

  • Edds-Walton PL, Fay, RR (2003). Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau. J Comp Phys A 189(7):527–543

    Google Scholar 

  • Enger PS (1963) Single unit activity in peripheral auditory system of a teleost fish. Acta Physiol Scand 59:9

    Google Scholar 

  • Enger PS, Hawkins AD, Sand O et al (1973) Directional sensitivity of saccular microphonic potentials in the haddock. J Exp Biol 59(2):425–433

    CAS  PubMed  Google Scholar 

  • Fay RR (1969) Behavioral audiogram for the goldfish. J Aud Res 9(2):112–121

    Google Scholar 

  • Fay RR (1970) Auditory frequency discrimination in the goldfish (Carassius auratus). J Comp Physiol Psychol 73(2):175

    Article  Google Scholar 

  • Fay RR (1972) Perception of amplitude‐modulated auditory signals by the goldfish. J Acoust Soc Am 52(2):660–666

    Article  Google Scholar 

  • Fay RR (1978a) Coding of information in single auditory‐nerve fibers of the goldfish. J Acoust Soc Am 63(1):136–146

    Google Scholar 

  • Fay RR (1978b) Sound detection and sensory coding by the auditory systems of fishes. The behavior of fish and other aquatic animals, 197–236

    Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka, IL

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: The evolutionary biology of hearing. Springer, New York, pp 229–263

    Google Scholar 

  • Fay RR (1995) Perception of spectrally and temporally complex sounds by the goldfish (Carassius auratus). Hear Res 89(1):146–154

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1998) Auditory stream segregation in goldfish (Carassius auratus). Hear Res 120(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (2009) Sound source segregation by goldfish: two simultaneous tones. J Acoust Soc Am 125:4053–4059

    Article  PubMed Central  PubMed  Google Scholar 

  • Fay RR, Coombs S (1983) Neural mechanisms in sound detection and temporal summation. Hear res 10(1):69–92

    Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Diversity in frequency response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 113(1):235–246

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Edds-Walton PL (2000) Directional encoding by fish auditory systems. Philos Trans R Soc Lond B Biol Sci 355(1401):1281–1284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fine ML (1978) Seasonal and geographical variation of the mating call of the oyster toadfish Opsanus tau L. Oecologia 36(1):45–57

    Article  Google Scholar 

  • Fish MP (1954) The character and significance of sound production among fishes of the western North Atlantic. Bingham Oceanographic Laboratory

    Google Scholar 

  • Fish MP, Mowbray WH (1970) Sound of western North Atlantic fishes. The Johns Hopkins Press, Baltimore

    Google Scholar 

  • Fontaine E, Lentink D, Kranenbarg S et al (2008) Automated visual tracking for studying the ontogeny of zebrafish swimming. J Exp Biol 211(8):1305–1316

    Article  PubMed  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30(6):1377–1403

    CAS  PubMed  Google Scholar 

  • Garcı́a-Pérez MA (1998) Forced-choice staircases with fixed step sizes: asymptotic and small-sample properties. Vision Res 38(12): 1861–1881

    Google Scholar 

  • Gescheider GA (1997) Psychophysics: the fundamentals. LEA, London

    Google Scholar 

  • Gray GA, Winn HE (1961) Reproductive ecology and sound production of the toadfish, Opsanus tau. Ecology 42(2):274–282

    Article  Google Scholar 

  • Harvey LO (1996) Efficient estimation of sensory thresholds with ML-PEST. Spat Vis 11(1):121–128

    Article  Google Scholar 

  • Hawkins AD (1981) The hearing abilities of fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York

    Google Scholar 

  • Hawkins AD, Chapman CJ (1966) Underwater sounds of the haddock, Melanogrammus aeglefinus. J Mar Biol Assoc UK 46(2):241–247

    Article  Google Scholar 

  • Inoue M, Tanimoto M, Oda Y (2013) The role of ear stone size in hair cell acoustic sensory transduction. Sci Rep 3:2114

    PubMed Central  PubMed  Google Scholar 

  • Jacobs DW, Tavolga WN (1968) Acoustic frequency discrimination in the goldfish. Anim Behav 16(1):67–71

    Article  CAS  PubMed  Google Scholar 

  • Jesteadt W (1980) An adaptive procedure for subjective judgments. Atten Percept Psychophys 28(1):85–88

    Article  CAS  Google Scholar 

  • Kawasaki M, Guo, YX (1998) Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus. J Neurosci 18(18): 7599–7611

    Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response approach. J Comp Physiol A 182(3):307–318

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Patterson J, Kimmel RO (1974) The development and behavioral characteristics of the startle response in the zebra fish. Dev Psychobiol 7(1):47–60

    Article  CAS  PubMed  Google Scholar 

  • Kimmel CB, Eaton RC, Powell SL (1980) Decreased fast-start performance of zebrafish larvae lacking Mauthner neurons. J Comp Physiol A 140:343–350

    Article  Google Scholar 

  • Kohashi T, Nakata N, Oda Y (2012) Effective sensory modality activating an escape triggering neuron switches during early development in zebrafish. J Neurosci 32(17):5810–5820

    Article  CAS  PubMed  Google Scholar 

  • Korn H, Faber DS (2005) The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47(1):13–28

    Article  CAS  PubMed  Google Scholar 

  • Kozloski J, Crawford, JD (2000) Transformations of an auditory temporal code in the medulla of a soundproducing fish. J Neurosci 20(6):2400–2408

    Google Scholar 

  • Ladich F (1997) Agonistic behaviour and significance of sounds in vocalizing fish. Mar Freshw Behav Physiol 29(1–4):87–108

    Article  Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 23:317–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Lobel PS (2001) Acoustic behavior of cichlid fishes. J Aquaricult Aquat Sci 9:167–186

    Google Scholar 

  • Lu Z, DeSmidt AA (2013) Early development of hearing in zebrafish. J Assoc Res Otolaryngol 14(4):509–521

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu Z, Popper AN, Fay RR (1996) Behavioral detection of acoustic particle motion by a teleost fish (Astronotus ocellatus): sensitivity and directionality. J Comp Physiol A 179(2):227–233

    Article  CAS  PubMed  Google Scholar 

  • Marini M, Trevisan P, Dondi MA et al (1991) The mauthner neurons in salamandra. Ital J Zool 58(1):43–48

    Google Scholar 

  • Maruska KP, Tricas, TC (2009) Encoding properties of auditory neurons in the brain of a soniferous damselfish: response to simple tones and complex conspecific signals. J Comp Phys A 195(11):1071–1088

    Google Scholar 

  • McCaughran J, Bell J, Hitzemann R (1999) On the relationships of high-frequency hearing loss and cochlear pathology to the acoustic startle response (ASR) and prepulse inhibition of the ASR in the BXD recombinant inbred series. Behav Genet 29(1):21–30

    Article  PubMed  Google Scholar 

  • McCormick CA, Popper AN (1984) Auditory sensitivity and psychophysical tuning curves in the elephant nose fish, Gnathonemus petersii. J Comp Physiol A 155(6):753–761

    Article  Google Scholar 

  • McDonald HE (1922) Ability of Pimephales notatus to form associations with sound vibrations. J Comp Psychol 2(3):191

    Article  Google Scholar 

  • McKibben JR, Bass, AH (1999) Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J Comp Phys A 184(6):563–576

    Google Scholar 

  • Medan V, Preuss T (2011) Dopaminergic-induced changes in Mauthner cell excitability disrupt prepulse inhibition in the startle circuit of goldfish. J Neurophysiol 106(6):3195–3204

    Article  CAS  PubMed  Google Scholar 

  • Medan V, Preuss T (2014) The Mauthner-cell circuit of fish as a model system for startle plasticity. J Physiol Paris 108(2):129–140

    Article  PubMed  Google Scholar 

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Hearing and sound communication in fishes. Springer, New York, pp 395–426

    Google Scholar 

  • Neumeister H, Szabo TM, Preuss T (2008) Behavioral and physiological characterization of sensorimotor gating in the goldfish startle response. J Neurophysiol 99(3):1493–1502

    Article  PubMed  Google Scholar 

  • Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33(3):398–414

    Article  CAS  PubMed  Google Scholar 

  • Otis LS, Cerf JA, Thomas GJ (1957) Conditioned inhibition of respiration and heart rate in the goldfish. Science 126:263–264

    Article  CAS  PubMed  Google Scholar 

  • Parham K, Willott JF (1988) Acoustic startle response in young and aging C57BL/6J and CBA/J mice. Behav Neurosci 102(6):881–886

    Article  CAS  PubMed  Google Scholar 

  • Parker GH (1903) The sense of hearing in fishes. Am Nat 37:185–204

    Article  Google Scholar 

  • Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL et al (2011) Soundscape ecology: the science of sound in the landscape. BioScience 61(3):203

    Article  Google Scholar 

  • Popper AN (1972) Pure‐tone auditory thresholds for the carp, Cyprinis carpio. J Acoust Soc Am 52(6):1714–1717

    Article  Google Scholar 

  • Popper AN, Clarke NL (1979) Non-simultaneous auditory masking in the goldfish, Carassius auratus. J Exp Biol 83(1):145–158

    CAS  PubMed  Google Scholar 

  • Popper AN, Fay RR (1973) Sound detection and processing by teleost fishes: a critical review. J Acoust Soc Am 53(6):1515–1529

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41(1):14–25

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1):25–36

    Article  PubMed  Google Scholar 

  • Popper AN, Chan AT, Clarke NL (1973) An evaluation of methods for behavioral investigations of teleost audition. Behav Res Methods Instrum 5(6):470–472

    Article  Google Scholar 

  • Retzius G (1881) Das Gehörorgan der Wirbelthiere: Das Gehörorgan der Fische und Amphibien. Samson & Wallin, Stockholm

    Google Scholar 

  • Rigley L, Marshall JA (1973) Sound production by the elephant-nose fish, Gnathonemus petersi (Pisces, Mormyridae). Copeia 1973:134–135

    Article  Google Scholar 

  • Roberts AC, Reichl J, Song MY et al (2011) Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One 6(12), e29132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Russo JM (1979) Sensation in the rat and mouse: evaluation by reflex modification. Doctoral dissertation, Department of Psychology, University of Rochester

    Google Scholar 

  • Schuijf A (1975) Directional hearing of cod (Gadus morhua) under approximate free field conditions. J Comp Physiol 98(4):307–332

    Article  Google Scholar 

  • Simpson SD, Meekan MG, McCauley RD et al (2004). Attraction of settlement-stage coral reef fishes to reef noise. Mar Ecol Prog Ser 276(1):263–268

    Google Scholar 

  • Sisneros JA (2009) Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus. J Neurophysiol 102(2):1121–1131

    Article  PubMed  Google Scholar 

  • Sisneros JA, Bass AH (2003) Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci 23(3):1049–1058

    CAS  PubMed  Google Scholar 

  • Sisneros JA, Popper AN, Hawkins AD, Fay RR (2015) Auditory evoked potential audiograms compared to behavioral audiograms in aquatic animals. In: Popper AN, Hawkins AD (eds) Effects of noise on aquatic life II, advances in experimental medicine and biology. Springer, New York

    Google Scholar 

  • Tavolga WN (1974) Signal/noise ratio and the critical band in fishes. J Acoust Soc Am 55(6):1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes: pure tone thresholds in nine species of marine teleosts. Bull AMNH 126:2

    Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35(17):2503–2522

    Article  CAS  PubMed  Google Scholar 

  • von Frisch K (1936) Über den Gehörsinn der Fische. Biol Rev 11(2):210–246

    Article  Google Scholar 

  • Walter M, Tziridis K, Ahlf S et al (2012) Context Dependent Auditory Thresholds Determined by Brainstem Audiometry and Prepulse Inhibition in Mongolian Gerbils. Open J of Acoust 2(1):34–49

    Google Scholar 

  • Wark AR, Peichel CL (2010) Lateral line diversity among ecologically divergent threespine stickleback populations. J Exp Biol 213(1):108–117

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watson AB, Pelli DG (1983) QUEST: a Bayesian adaptive psychometric method. Percept Psychophys 33(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Weeg M, Fay RR, Bass AH (2002) Directionality and frequency tuning of primary saccular afferents of a vocal fish, the plainfin midshipman (Porichthys notatus). J Comp Physiol A 188(8):631–641

    Article  CAS  Google Scholar 

  • Weiss SA, Zottoli SJ, Do SC et al (2006) Correlation of C-start behaviors with neural activity recorded from the hindbrain in free-swimming goldfish (Carassius auratus). J Exp Biol 209(23):4788–4801

    Article  PubMed  Google Scholar 

  • Westerfield F (1922) The ability of mudminnows to form associations with sounds. J Comp Psychol 2(3):187–190

    Article  Google Scholar 

  • Willott JF, Carlson S, Chen H (1994) Prepulse inhibition of the startle response in mice: relationship to hearing loss and auditory system plasticity. Behav Neurosci 108(4):703–713

    Article  CAS  PubMed  Google Scholar 

  • Wilson DM (1959) Function of giant Mauthner’s neurons in the lungfish. Science 129(3352):841–842

    Article  CAS  PubMed  Google Scholar 

  • Woodworth RS, Schlosberg H (1972). Experimental Psychology, 3rd Edition. Holt, Rinehart, and Winston

    Google Scholar 

  • Yager D, Thorpe S (1970) Investigations of goldfish color vision. In: Animal psychophysics: the design and conduct of sensory experiments. Springer, pp. 259–275

    Google Scholar 

  • Yan HY, Popper AN (1991) An automated positive reward method for measuring acoustic sensitivity in fish. Behav Res Methods Instrum Comput 23(3):351–356

    Article  Google Scholar 

  • Yan HY, Popper AN (1992) Auditory sensitivity of the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 171(1):105–109

    Article  CAS  PubMed  Google Scholar 

  • Yan HY, Popper AN (1993) Acoustic intensity discrimination by the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 173(3):347–351

    Article  CAS  PubMed  Google Scholar 

  • Yerkes RM (1903) The instincts, habits and reactions of the frog. Psychol Rev 4(1):579–638

    Google Scholar 

  • Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208(7):1363–1372

    Article  PubMed  Google Scholar 

  • Zeddies DG, Fay RR, Alderks PW et al (2010) Sound source localization by the plainfin midshipman fish, Porichthys notatus. J Acoust Soc Am 127(5):3104–3113

    Article  PubMed  Google Scholar 

  • Zeddies DG, Fay RR, Gray MD et al (2012) Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. J Exp Biol 215(1):152–160

    Article  PubMed  Google Scholar 

  • Zottoli SJ, Faber DS (2000) The Mauthner cell: what has it taught us? Neuroscientist 6(1):26–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Arthur Popper and Richard Fay for inspiration and guidance, both directly and indirectly. Much of the work highlighted in this chapter draws from the influential research studies of Drs. Popper and Fay and has been a source of inspiration for AAB’s dissertation research. AAB and JAS have had the pleasure of working with Dick Fay directly in sound localization studies of the plainfin midshipman fish at the UC Bodega Marine Laboratory. It was during these studies that AAB first met Dick as a first-year graduate student, and received some of his wisdom and advice about how to conduct psychoacoustic studies of fish hearing. We would like to thank and acknowledge Drs. Richard Fay and David Zeddies, as the first to propose the idea of using prepulse inhibition to measure auditory function in fishes. Although we have not directly collaborated with Dr. Arthur Popper, his influence has been a significant force through not only his research, but through his legacy of former students and post-docs.

AAB thanks Drs. David Raible, Edwin Rubel, and Catherine Peichel for support and advice. We would also like to thank Drs. Allison Coffin, Kelly Owens, Peter Alderks, and Liz Whitchurch for discussions of auditory systems and hearing in fishes.

AAB’s research has been supported in part by NIH grant 2T32DC005361-11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwin A. Bhandiwad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhandiwad, A.A., Sisneros, J.A. (2016). Revisiting Psychoacoustic Methods for the Assessment of Fish Hearing. In: Sisneros, J. (eds) Fish Hearing and Bioacoustics. Advances in Experimental Medicine and Biology, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-21059-9_8

Download citation

Publish with us

Policies and ethics