Skip to main content

Comparison of Electrophysiological Auditory Measures in Fishes

  • Chapter
Fish Hearing and Bioacoustics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 877))

Abstract

Sounds provide fishes with important information used to mediate behaviors such as predator avoidance, prey detection, and social communication. How we measure auditory capabilities in fishes, therefore, has crucial implications for interpreting how individual species use acoustic information in their natural habitat. Recent analyses have highlighted differences between behavioral and electrophysiologically determined hearing thresholds, but less is known about how physiological measures at different auditory processing levels compare within a single species. Here we provide one of the first comparisons of auditory threshold curves determined by different recording methods in a single fish species, the soniferous Hawaiian sergeant fish Abudefduf abdominalis, and review past studies on representative fish species with tuning curves determined by different methods. The Hawaiian sergeant is a colonial benthic-spawning damselfish (Pomacentridae) that produces low-frequency, low-intensity sounds associated with reproductive and agonistic behaviors. We compared saccular potentials, auditory evoked potentials (AEP), and single neuron recordings from acoustic nuclei of the hindbrain and midbrain torus semicircularis. We found that hearing thresholds were lowest at low frequencies (~75–300 Hz) for all methods, which matches the spectral components of sounds produced by this species. However, thresholds at best frequency determined via single cell recordings were ~15–25 dB lower than those measured by AEP and saccular potential techniques. While none of these physiological techniques gives us a true measure of the auditory “perceptual” abilities of a naturally behaving fish, this study highlights that different methodologies can reveal similar detectable range of frequencies for a given species, but absolute hearing sensitivity may vary considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrian ED, Craik KJW, Strudy RS (1938) The electrical response of the auditory mechanism in cold-blooded vertebrates. Proc R Soc Lond B 125:435–455

    Article  Google Scholar 

  • Akamatsu T, Okumura T, Novarini N, Yan HY (2002) Empirical refinements applicable to the recording of fish sounds in small tanks. J Acoust Soc Am 112:3073–3082

    Article  PubMed  Google Scholar 

  • Alderks PW, Sisneros JA (2011) Ontogeny of auditory saccular sensitivity in the plainfin midshipman fish, Porichthys notatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(4):387–398. doi:10.1007/s00359-010-0623-4

    Article  PubMed  Google Scholar 

  • Alderks PW, Sisneros JA (2013) Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus. PLoS One 8(12), e82182. doi:10.1371/journal.pone.0082182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Amorim M (2006) Diversity of sound production. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Enfield, pp 71–105

    Google Scholar 

  • Bang PI, Sewell WF, Malicki JJ (2000) Behavioral screen for dominant mutations affecting zebrafish auditory system. Assoc Res Otolaryngol Abs 23:177–187

    Google Scholar 

  • Bass AH, McKibben JR (2003) Neural mechanisms and behaviors for acoustic communication in teleost fish. Prog Neurobiol 69(1):1–26

    Article  PubMed  Google Scholar 

  • Batschelet E (1981) Circular statistics in biology. Academic, New York

    Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 216(Pt 18):3504–3513. doi:10.1242/jeb.087635

    Article  PubMed Central  PubMed  Google Scholar 

  • Bodnar DA, Bass AH (1997) Temporal coding of concurrent acoustic signals in auditory midbrain. J Neurosci 17:7553–7564

    CAS  PubMed  Google Scholar 

  • Bodnar DA, Bass AH (1999) Midbrain combinatorial code for temporal and spectral information in concurrent acoustic signals. J Neurophysiol 81(2):552–563

    CAS  PubMed  Google Scholar 

  • Bodnar DA, Bass AH (2001a) Coding of concurrent vocal signals by the auditory midbrain: effects of duration. J Comp Physiol A Sens Neural Behav Physiol 187(5):381–391

    Article  CAS  Google Scholar 

  • Bodnar DA, Bass AH (2001b) Coding of concurrent vocal signals by the auditory midbrain: effects of stimulus level and depth of modulation. J Acoust Soc Am 109(2):809–825

    Article  CAS  PubMed  Google Scholar 

  • Bodnar DA, Holub AD, Land BR, Skovira J, Bass AH (2001) Temporal population code of concurrent vocal signals in the auditory midbrain. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 187(11):865–873

    Article  CAS  PubMed  Google Scholar 

  • Braun CB, Sand O (2014) Functional overlap and nonoverlap between lateral line and auditory systems. In: Coombs S, Bleckmann H, Fay RR, Popper AN (eds) The lateral line system, Springer handbook of auditory research, vol 48. Springer, New York, pp 281–312

    Google Scholar 

  • Carr CE (1986) Time coding in electric fish and barn owls. Brain Behav Evol 28(1–3):122–133

    Article  CAS  PubMed  Google Scholar 

  • Cohen MJ, Winn HE (1967) Electrophysiological observations on hearing and sound production in the fish, Porichthys notatus. J Exp Zool 165(3):355–369. doi:10.1002/jez.1401650305

    Article  CAS  PubMed  Google Scholar 

  • Cordova MS, Braun CB (2007) The use of anesthesia during evoked potential audiometry in goldfish (Carassius auratus). Brain Res 1153:78–83. doi:10.1016/j.brainres.2007.03.055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corwin JA, Bullock TH, Scheitzer J (1982) The auditory brainstem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 54:629–641

    Article  CAS  PubMed  Google Scholar 

  • Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol A 172(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • Crawford JD (1997) Feature-detecting auditory neurons in the brain of a sound producing fish. J Comp Physiol A 180:439–450

    Article  CAS  PubMed  Google Scholar 

  • de Vries H, Bleeker JDJW (1949) The microphonic activity of the labyrinth of the pigeon. Part II: the response of the cristae in the semicircular canals. Acta Otolaryngol 37:298–306

    Article  Google Scholar 

  • Edds-Walton PL, Fay RR (1995) Regional differences in directional response properties of afferents along the saccule of the toadfish, Opsanus tau. Biol Bull 189(2):211–212

    CAS  PubMed  Google Scholar 

  • Edds-Walton PL, Fay RR (1998) Directional auditory responses in the descending octaval nucleus of the toadfish (Opsanus tau). Biol Bull 195(2):191–192

    Article  CAS  PubMed  Google Scholar 

  • Edds-Walton PL, Fay RR (2003) Directional selectivity and frequency tuning of midbrain cells in the oyster toadfish, Opsanus tau. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(7):527–543

    Article  CAS  PubMed  Google Scholar 

  • Edds-Walton PL, Fay RR (2005) Sharpening of directional responses along the auditory pathway of the oyster toadfish, Opsanus tau. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191:1079–1086

    Google Scholar 

  • Edds-Walton PL, Fay RR (2008) Directional and frequency response characteristics in the descending octaval nucleus of the toadfish (Opsanus tau). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 194(12):1013–1029. doi:10.1007/s00359-008-0373-8

    Article  PubMed  Google Scholar 

  • Edds-Walton PL, Matos SR, Fay RR (2013) Does the magnocellular octaval nucleus process auditory information in the toadfish, Opsanus tau? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(5):353–363. doi:10.1007/s00359-013-0799-5

    Article  PubMed  Google Scholar 

  • Egner S, Mann D (2005) Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Prog Ser 285:213–222

    Article  Google Scholar 

  • Enger PS (1966) Acoustic thresholds in goldfish and its relation to the sound source distance. Comp Biochem Physiol 18:859–868

    Article  CAS  PubMed  Google Scholar 

  • Enger PS, Hawkins AD, Sand O, Chapman CJ (1973) Directional sensitivity of saccular microphonic potentials in the haddock. J Exp Biol 59:425–433

    CAS  PubMed  Google Scholar 

  • Fay RR (1974) Sound reception and processing in the carp: saccular potentials. Comp Biochem Physiol 46:29–42

    Article  Google Scholar 

  • Fay RR (1977) Auditory temporal modulation transfer function for the goldfish. J Acoust Soc Am 62:588

    Article  Google Scholar 

  • Fay RR (1978a) Coding of information in single auditory-nerve fibers of the goldfish. J Acoust Soc Am 63(1):136–146

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1978b) Phase-locking in goldfish saccular nerve fibers accounts for frequency discrimination capacities. Nature 275:320–322

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1979) Discharge patterns of lagenar and saccular neurones of the goldfish eight nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol A 62(2):377–386

    Article  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Fay R (2009) Soundscapes and the sense of hearing of fishes. Integr Zool 4(1):26–32. doi:10.1111/j.1749-4877.2008.00132.x

    Article  PubMed  Google Scholar 

  • Fay RR, Coombs S (1983) Neural mechanisms in sound detection and temporal summation. Hear Res 10(1):69–92

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Edds-Walton PL (1997) Diversity in frequency response properties of saccular afferents of the toadfish, Opsanus tau. Hear Res 113(1–2):235–246

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Edds-Walton PL (1999) Sharpening of directional auditory input in the descending octaval nucleus of the toadfish, Opsanus tau. Biol Bull 197(2):240–241

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, Edds-Walton PL (2001) Bimodal units in the torus semicircularis of the toadfish (Opsanus tau). Biol Bull 201(2):280–281

    Article  CAS  PubMed  Google Scholar 

  • Fay RR, MacKinnon JR (1969) A simplified technique for conditioning respiratory mouth movements in fish. Behav Res Methods Instrum 1:123–124

    Article  Google Scholar 

  • Fay RR, Olsho LW (1979) Discharge patterns of lagenar and saccular neurones of the goldfish eighth nerve: displacement sensitivity and directional characteristics. Comp Biochem Physiol A 62:377–386

    Article  Google Scholar 

  • Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassuis auratus). J Exp Biol 61:243–260

    CAS  PubMed  Google Scholar 

  • Fay RR, Popper AN (1975) Modes of stimulation of the teleost ear. J Exp Biol 62:370–387

    Google Scholar 

  • Fay RR, Ream TJ (1986) Acoustic response and tuning in saccular nerve fibers of the Goldfish (Carassius auratus). J Acoust Soc Am 79(6):1883–1895

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Schellart NA (1999) Central auditory processing in fish and amphibians. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 218–268

    Chapter  Google Scholar 

  • Fine ML (1981) Mismatch between sound production and hearing in the oyster toadfish. In: Tavolga WA, Popper AN, Fay RR (eds) Hearing and sound communication in fishes, vol 1. 1st edn. Springer, New York, pp 257–263

    Google Scholar 

  • Flock A (1965) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngol Suppl 199:7–90

    Google Scholar 

  • Furukawa T, Ishii Y (1967) Effects of static bending of sensory hairs on sound receptors in the goldfish. Jpn J Physiol 17:572–588

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Ishii Y, Matsura S (1972) An analysis of microphonic potentials of the sacculus of goldfish. Jpn J Physiol 22:603–616

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32(4):613–636

    CAS  PubMed  Google Scholar 

  • Hama K (1969) A study on the fine structure of the saccular macula of the gold fish. Z Zellforsch 94:155–171

    Article  CAS  PubMed  Google Scholar 

  • Higgs DM, Radford CA (2013) The contribution of the lateral line to ‘hearing’ in fish. J Exp Biol 216(Pt 8):1484–1490. doi:10.1242/jeb.078816

    Article  CAS  PubMed  Google Scholar 

  • Horodysky AZ, Brill RW, Fine ML, Musick JA, Latour RJ (2008) Acoustic pressure and particle motion thresholds in six sciaenid fishes. J Exp Biol 211(Pt 9):1504–1511. doi:10.1242/jeb.016196

    Article  PubMed  Google Scholar 

  • Jacobs DW, Tavolga WN (1968) Acoustic frequency discrimination in the goldfish. Anim Behav 16(67–71)

    Google Scholar 

  • Javel E, Mott JB (1988) Physiological and psychophysical correlates of temporal processes in hearing. Hear Res 34:275–294

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki M, Guo YX (1998) Parallel projection of amplitude and phase information from the hindbrain to the midbrain of the African electric fish Gymnarchus niloticus. J Neurosci 18(18):7599–7611

    CAS  PubMed  Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response approach. J Comp Physiol A 182(3):307–318

    Article  CAS  PubMed  Google Scholar 

  • Kirsch JA, Hofmann MH, Mogdans J, Bleckmann H (2002) Response properties of diencephalic neurons to visual, acoustic and hydrodynamic stimulation in the goldfish, Carassius auratus. Zoology 105(1):61–70

    Article  PubMed  Google Scholar 

  • Kozloski J, Crawford JD (2000) Transformations of an auditory temporal code in the medulla of a sound-producing fish. J Neurosci 20(6):2400–2408

    CAS  PubMed  Google Scholar 

  • Kojima T, Ito H, Komada T, Taniuchi T, Akamatsu T (2005) Measurements of auditory sensitivity in common carp Cyprinus carpio by the auditory brainstem response technique and cardiac conditioning method. Fisher Sci 71:95–100

    Google Scholar 

  • Ladich F (1999) Did auditory sensitivity and vocalization evolve independently in otophysan fishes? Brain Behav Evol 53(5-6):288–304

    Google Scholar 

  • Ladich F (2000) Acoustic communication and the evolution of hearing in fishes. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 355(1401):1285–1288

    Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 23:317–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Ladich F, Wysocki LE (2009) Does speaker presentation affect auditory evoked potential thresholds in goldfish? Comp Biochem Physiol A Mol Integr Physiol 154(3):341–346. doi:10.1016/j.cbpa.2009.07.004

    Article  PubMed  CAS  Google Scholar 

  • Lobel PS, Mann DA (1995) Spawning sounds of the damselfish, Dascyllus albisella (pomacentridae), and relationship to male size. International Journal of Animal Sound and its Recording 6:187–198

    Google Scholar 

  • Lu Z, Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol A 173:33–48

    CAS  PubMed  Google Scholar 

  • Lu Z, Fay RR (1995) Acoustic response properties of single neurons in the central posterior nucleus of the thalamus of the goldfish, Carassius auratus. J Comp Physiol A 176(6):747–760

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Fay RR (1996) Two-tone interaction in primary afferents and midbrain neurons of the goldfish, Carassius auratus. Audit Neurosci 2:257–273

    Google Scholar 

  • Lu Z, Song J, Popper AN (1998) Encoding of acoustic directional information by saccular afferents of the sleeping goby, Dormitator latifrons. J Comp Physiol A 182:805–815

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu Z, Buchser WJ (2003) Acoustic response properties of lagenar nerve fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189(12):889–905

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Xu Z, Buchser WJ (2004) Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(11):923–938

    CAS  PubMed  Google Scholar 

  • Ma WL, Fay RR (2002) Neural representations of the axis of acoustic particle motion in nucleus centralis of the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 188(4):301–313

    Article  PubMed  Google Scholar 

  • Maruska KP, Mensinger AF (2015) Directional sound sensitivity in utricular afferents in the toadfish, Opsanus tau. J Exp Biol 218:1759–1766. doi:10.1242/jeb.115345

    Google Scholar 

  • Maruska KP, Tricas TC (2009a) Central projections of octavolateralis nerves in the brain of a soniferous damselfish (Abudefduf abdominalis). J Comp Neurol 512(5):628–650. doi:10.1002/cne.21923

    Article  PubMed  Google Scholar 

  • Maruska KP, Tricas TC (2009b) Encoding properties of auditory neurons in the brain of a soniferous damselfish: response to simple tones and complex conspecific signals. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. doi:10.1007/s00359-009-0480-1

    PubMed  Google Scholar 

  • Maruska KP, Tricas TC (2011) Gonadotropin-releasing hormone (GnRH) modulates auditory processing in the fish brain. Horm Behav 59(4):451–464. doi:10.1016/j.yhbeh.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Maruska KP, Boyle KS, Dewan LR, Tricas TC (2007) Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis. J Exp Biol 210(22):3990–4004

    Article  PubMed  Google Scholar 

  • Maruska KP, Ung US, Fernald RD (2012) The African cichlid fish Astatotilapia burtoni uses acoustic communication for reproduction: sound production, hearing, and behavioral significance. PLoS One 7(5), e37612. doi:10.1371/journal.pone.0037612

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCormick C (1999) Anatomy of the central auditory pathways of fish and amphibians. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 155–217

    Chapter  Google Scholar 

  • McKibben JR, Bass AH (1999) Peripheral encoding of behaviorally relevant acoustic signals in a vocal fish: single tones. J Comp Physiol A Sens Neural Behav Physiol 184(6):563–576

    Article  CAS  Google Scholar 

  • Meyer M, Fay RR, Popper AN (2010) Frequency tuning and intensity coding of sound in the auditory periphery of the lake sturgeon, Acipenser fulvescens. J Exp Biol 213(Pt 9):1567–1578. doi:10.1242/jeb.031757

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer M, Popper AN, Fay RR (2012) Coding of sound direction in the auditory periphery of the lake sturgeon, Acipenser fulvescens. J Neurophysiol 107(2):658–665. doi:10.1152/jn.00390.2011

    Article  PubMed Central  PubMed  Google Scholar 

  • Myrberg AA, Jr., Lugli M (2006) Reproductive behavior and acoustical interactions. In: Ladich F, Collin SP, Moller P, Kapoor BG, eds. Communication in Fishes, Volume 1. Enfield, N.H.: Science Publishers. p 149–176

    Google Scholar 

  • Myrberg AAJ, Ha SJ, Shamblott MJ (1993) The sounds of bicolor damselfish (Pomacentrus partitus): Predictors of body size and a spectral basis for individual recognition and assessment. Journal of the Acoustical Society of America 94 No. 6:3067–3070

    Google Scholar 

  • Offutt GC (1968) Auditory response in the goldfish. J Aud Res 8:391–400

    Google Scholar 

  • Palmer LM, Mensinger AF (2002) Sensitivity of the anterior lateral line to complex stimuli in free swimming oyster toadfish, Opsanus tau. Integr Comp Biol 42(6):1290

    Google Scholar 

  • Parvulescu A (1964) Problems of propagation and processing. In: Tavolga WN (ed) Marine bio-acoustics. Pergamon Press, Oxford, pp 87–100

    Google Scholar 

  • Parvulescu A (1967) The acoustics of small tanks. In: Tavolga WN (ed) Marine bioacoustics. Pergamon Press, Oxford, pp 7–14

    Google Scholar 

  • Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Aud Res XI:239–247

    Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273(1–2):25–36. doi:10.1016/j.heares.2009.12.023

    Article  PubMed  Google Scholar 

  • Prechtl JC, von der Emde G, Wolfart J, Karamursel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18(18):7381–7393

    CAS  PubMed  Google Scholar 

  • Radford CA, Mensinger AF (2014) Anterior lateral line nerve encoding to tones and play-back vocalisations in free-swimming oyster toadfish, Opsanus tau. J Exp Biol 217(Pt 9):1570–1579. doi:10.1242/jeb.092510

    Article  PubMed  Google Scholar 

  • Radford CA, Montgomery JC, Caiger P, Higgs DM (2012) Pressure and particle motion detection thresholds in fish: a re-examination of salient auditory cues in teleosts. J Exp Biol 215(Pt 19):3429–3435. doi:10.1242/jeb.073320

    Article  PubMed  Google Scholar 

  • Schellart NA (1983) Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 42(1):39–44

    Article  CAS  PubMed  Google Scholar 

  • Scholik AR, Yan HY (2001) Effects of underwater noise on auditory sensitivity of a cyprinid fish. Hear Res 152(1–2):17–24

    Article  CAS  PubMed  Google Scholar 

  • Sisneros JA (2007) Saccular potentials of the vocal plainfin midshipman fish, Porichthys notatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 193(4):413–424. doi:10.1007/s00359-006-0195-5

    Article  PubMed Central  PubMed  Google Scholar 

  • Sisneros JA (2009) Seasonal plasticity of auditory saccular sensitivity in the vocal plainfin midshipman fish, Porichthys notatus. J Neurophysiol 102(2):1121–1131. doi:10.1152/jn.00236.2009

    Article  PubMed  Google Scholar 

  • Sisneros JA, Bass AH (2003) Seasonal plasticity of peripheral auditory frequency sensitivity. J Neurosci 23(3):1049–1058

    CAS  PubMed  Google Scholar 

  • Sisneros JA, Bass AH (2005) Ontogenetic changes in the response properties of individual, primary auditory afferents in the vocal plainfin midshipman fish Porichthys notatus Girard. J Exp Biol 208(Pt 16):3121–3131. doi:10.1242/jeb.01742

    Article  PubMed  Google Scholar 

  • Sisneros JA, Forlano PM, Deitcher DL, Bass AH (2004) Steroid-dependent auditory plasticity leads to adaptive coupling of sender and receiver. Science 305(5682):404–407

    Article  CAS  PubMed  Google Scholar 

  • Smith ME, Coffin AB, Miller DL, Popper AN (2006) Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. J Exp Biol 209(Pt 21):4193–4202

    Article  PubMed  Google Scholar 

  • Suzuki A, Kozloski J, Crawford JD (2002) Temporal encoding for auditory computation: physiology of primary afferent neurons in sound-producing fish. J Neurosci 22(14):6290–6301

    CAS  PubMed  Google Scholar 

  • Tasaki I, Davis H, Eldredge DH (1954) Exploration of cochlear potentials in the guinea pig with a microelectrode. J Acoust Soc Am 26:765–773

    Article  Google Scholar 

  • Tavolga WN, Wodinsky J (1963) Auditory capacities in fishes. Bull Am Mus Nat Hist 126:177–240

    Google Scholar 

  • Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 211(Pt 4):502–509. doi:10.1242/jeb.008474

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Amorim MC, Ladich F (2007) Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J Exp Biol 210(Pt 12):2104–2112. doi:10.1242/jeb.004317

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Sisneros JA, Amorim MC, Fonseca PJ (2011) Auditory saccular sensitivity of the vocal Lusitanian toadfish: low frequency tuning allows acoustic communication throughout the year. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(9):903–913. doi:10.1007/s00359-011-0651-8

    Article  PubMed  Google Scholar 

  • Wysocki LE, Codarin A, Ladich F, Picciulin M (2009) Sound pressure and particle acceleration audiograms in three marine fish species from the Adriatic Sea. J Acoust Soc Am 126(4):2100–2107. doi:10.1121/1.3203562

    Article  PubMed  Google Scholar 

  • Yan HY, Popper AN (1991) An automated positive reward method for measuring acoustic sensitivity in fish. Behav Res Methods Instrum Comput 23(3):351–356

    Article  Google Scholar 

  • Yan HY, Fine ML, Horn NS, Colon WE (2000) Variability in the role of the gasbladder in fish audition. J Comp Physiol A 186:435–445

    Article  CAS  PubMed  Google Scholar 

  • Zeddies DG, Fay RR, Gray MD, Alderks PW, Acob A, Sisneros JA (2012) Local acoustic particle motion guides sound-source localization behavior in the plainfin midshipman fish, Porichthys notatus. J Exp Biol 215(Pt 1):152–160. doi:10.1242/jeb.064998

    Article  PubMed  Google Scholar 

  • Zelick R, Mann DA, Popper AN (1999) Acoustic communication in fishes and frogs. In: Fay RR, Popper AN (eds) Comparative hearing: fishes and amphibians. Springer, New York, pp 363–412

    Chapter  Google Scholar 

  • Zotterman Y (1943) The microphonic effect of teleost labyrinths and its biological significance. J Physiol 102(3):313–318

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Richard Fay and Arthur Popper for their continued inspiration, ideas, mentorship, and encouragement that they have given us as scientists. Our existing knowledge of fish bioacoustics and comparative hearing in vertebrates would be extremely limited without their career-long research progress and leadership. Their valuable research contributions to the field of fish hearing and bioacoustics will continue to inspire both new research directions and the next generation of scientists. Art Popper’s work has stimulated an appreciation of the variety and specializations in inner ear morphology and accessory hearing structures responsible for diverse hearing capabilities among fishes, with many more discoveries to be made as the remaining >30,000 species of fishes are examined. Dick Fay’s work has significantly improved our understanding of the neural mechanisms governing auditory perception, temporal and frequency domain processing, effective stimulus for the fish auditory system (e.g., use of shaker table stimulus), directional hearing abilities, and how information is transformed along the auditory pathway from the endorgan to higher processing centers in the brain. Together, Art and Dick have also provided invaluable data on auditory capabilities in fishes for comparison with those of other vertebrates, and have brought us closer to understanding how fish hear, what fish hear, and how they perceive the underwater soundscape they inhabit.

We also thank Tim Tricas for his guidance and insights during different stages of this research. Funding was provided in part by an NSF Doctoral Dissertation Improvement Grant (IBN 04-08197 to KPM). We also thank University of Hawaii at Manoa, Hawaii Institute of Marine Biology, University of Washington, and Louisiana State University for support during different phases of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen P. Maruska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maruska, K.P., Sisneros, J.A. (2016). Comparison of Electrophysiological Auditory Measures in Fishes. In: Sisneros, J. (eds) Fish Hearing and Bioacoustics. Advances in Experimental Medicine and Biology, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-21059-9_11

Download citation

Publish with us

Policies and ethics