Skip to main content

Diagnostic Results and Indications

  • Chapter
Stress Echocardiography

Abstract

The relationship between the data obtained from provocative tests and angiographically assessed coronary artery disease is usually expressed in terms of sensitivity and specificity, where sensitivity is the frequency of a positive test result in a population of patients with coronary artery disease and specificity is the frequency of a negative test result in a population of patients without disease. In a given population, sensitivity and specificity values are affected by a constellation of factors (some of which – more relevant to stress echocardiography – are summarized in Tables 19.1 and 19.2) related to the angiographic standard, patient population, stress methodology, and interpretation criteria. In the presence of more severe and extensive coronary artery disease, any stress echocardiography test will give higher sensitivity values [1]. For any given level of stenosis, angiographic coronary lesions of the complex type (i.e., with intraluminal filling defects and/or irregular margins suggestive of thrombus and/or ulcers) will give higher sensitivity values for vasodilator stresses [2], but not inotropic stresses [3]. Abundant coronary collateral circulation makes the myocardium more vulnerable to ischemia during vasodilator stresses [4], whereas exercise or inotropic stress results are independent of angiographically assessed collateral circulation [5]. All stresses yield better sensitivity results in populations with previous myocardial infarction and in patients studied while they are off antianginal therapy, which lowers the sensitivity of both physical and pharmacological stresses [6, 7]. The evaluation of patients with variant angina inflates sensitivity since stresses such as exercise or dobutamine may elicit vasospasm – and therefore ischemia – independently of the underlying organic stenosis. Stress-related factors are also important. Submaximal stresses sharply lower test sensitivity (to a greater extent than perfusion imaging sensitivity) [6]. During exercise, a peak stress acquisition yields better sensitivity than poststress imaging such as the one performed after treadmill exercise. The use of more aggressive test protocols leads to higher sensitivities; however, the user-friendliness of the test declines. For pharmacological tests, the best trade-off between accuracy and feasibility for primary diagnostic purposes is probably a high dose with atropine for dobutamine and an accelerated high dose for dipyridamole (Fig. 19.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Philbrick JT, Horwitz RI, Feinstein AR (1980) Methodologic problems of exercise testing for coronary artery disease: groups, analysis and bias. Am J Cardiol 46:807–812

    Article  CAS  PubMed  Google Scholar 

  2. Lu C, Picano E, Pingitore A et al (1995) Complex coronary artery lesion morphology influences results of stress echocardiography. Circulation 91:1669–1675

    Article  CAS  PubMed  Google Scholar 

  3. Heyman J, Salvade P, Picano E et al (1997) The elusive link between coronary lesion morphology and dobutamine stress echocardiography results. The EDIC (Echo Dobutamine International Cooperative) Study Group. Int J Card Imaging 13:395–401

    Article  CAS  PubMed  Google Scholar 

  4. Gliozheni E, Picano E, Bernardino L et al (1996) Angiographically assessed coronary collateral circulation increases vulnerability to myocardial ischemia during vasodilator stress testing. Am J Cardiol 78:1419–1424

    Article  CAS  PubMed  Google Scholar 

  5. Beleslin BD, Ostojic M, Djordjevic-Dikic A et al (1999) Integrated evaluation of relation between coronary lesion features and stress echocardiography results: the importance of coronary lesion morphology. J Am Coll Cardiol 33:717–726

    Article  CAS  PubMed  Google Scholar 

  6. Marwick T, Willemart B, D’Hondt AM et al (1993) Selection of the optimal nonexercise stress for the evaluation of ischemic regional myocardial dysfunction and malperfusion. Comparison of dobutamine and adenosine using echocardiography and 99mTc-MIBI single photon emission computed tomography. Circulation 87:345–354

    Article  CAS  PubMed  Google Scholar 

  7. Severi S, Picano E, Michelassi C et al (1994) Diagnostic and prognostic value of dipyridamole echocardiography in patients with suspected coronary artery disease. Comparison with exercise electrocardiography. Circulation 89:1160–1173

    Article  CAS  PubMed  Google Scholar 

  8. Marwick T, D’Hondt AM, Baudhuin T et al (1993) Optimal use of dobutamine stress for the detection and evaluation of coronary artery disease: combination with echocardiography or scintigraphy, or both? J Am Coll Cardiol 22:159–167

    Article  CAS  PubMed  Google Scholar 

  9. Parodi G, Picano E, Marcassa C, Sicari R et al (1999) High dose dipyridamole myocardial imaging: simultaneous sestamibi scintigraphy and two-dimensional echocardiography in the detection and evaluation of coronary artery disease. Italian Group of Nuclear Cardiology. Coron Artery Dis 10:177–184

    Article  CAS  PubMed  Google Scholar 

  10. Quinones MA, Verani MS, Haichin RM et al (1992) Exercise echocardiography versus 201Tl single-photon emission computed tomography in evaluation of coronary artery disease. Analysis of 292 patients. Circulation 85:1026–1031

    Article  CAS  PubMed  Google Scholar 

  11. de Albuquerque Fonseca L, Picano E (2001) Comparison of dipyridamole and exercise stress echocardiography for detection of coronary artery disease (a meta-analysis). Am J Cardiol 87:1193–1196

    Article  PubMed  Google Scholar 

  12. Picano E, Molinaro S, Pasanisi E (2008) The diagnostic accuracy of pharmacological stress echocardiography for the assessment of coronary artery disease: a meta-analysis. Cardiovasc Ultrasound 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  13. Imran MB, Palinkas A, Picano E (2003) Head-to-head comparison of dipyridamole echocardiography and stress perfusion scintigraphy for the detection of coronary artery disease: a meta-analysis. Comparison between stress echo and scintigraphy. Int J Cardiovasc Imaging 19:23–28

    Article  PubMed  Google Scholar 

  14. Pingitore A, Picano E, Colosso MQ et al (1996) The atropine factor in pharmacologic stress echocardiography. Echo Persantine (EPIC) and Echo Dobutamine International Cooperative (EDIC) Study Groups. J Am Coll Cardiol 27:1164–1170

    Article  CAS  PubMed  Google Scholar 

  15. Douglas PS, Khandheria B, Stainback RF et al (2008) ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 appropriateness criteria for stress echocardiography: a report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians, American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. J Am Coll Cardiol 51:1127–1147

    Article  PubMed  Google Scholar 

  16. Pingitore A, Picano E, Varga A et al (1999) Prognostic value of pharmacological stress echocardiography in patients with known or suspected coronary artery disease: a prospective, large-scale, multicenter, head-to-head comparison between dipyridamole and dobutamine test. Echo-Persantine International Cooperative (EPIC) and Echo-Dobutamine International Cooperative (EDIC) Study Groups. J Am Coll Cardiol 34:1769–1777

    Article  CAS  PubMed  Google Scholar 

  17. Picano E, Ostojic M, Varga A et al (1996) Combined low dose dipyridamole-dobutamine stress echocardiography to identify myocardial viability. J Am Coll Cardiol 27:1422–1428

    Article  CAS  PubMed  Google Scholar 

  18. Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR (1992) Comparison of adenosine, dipyridamole, and dobutamine in stress echocardiography. Ann Intern Med 116:190–196

    Article  CAS  PubMed  Google Scholar 

  19. Beleslin BD, Ostojic M, Stepanovic J et al (1994) Stress echocardiography in the detection of myocardial ischemia. Head-to-head comparison of exercise, dobutamine, and dipyridamole tests. Circulation 90:1168–1176

    Article  CAS  PubMed  Google Scholar 

  20. Sochowski RA, Yvorchuk KJ, Yang Y, Rattes MF, Chan KL (1995) Dobutamine and dipyridamole stress echocardiography in patients with a low incidence of severe coronary artery disease. J Am Soc Echocardiogr 8:482–487

    Article  CAS  PubMed  Google Scholar 

  21. Lattanzi F, Picano E, Bolognese L et al (1991) Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise-electrocardiography. Circulation 83:1256–1262

    Article  CAS  PubMed  Google Scholar 

  22. Sicari R, Nihoyannopoulos P, Evangelista A et al (2008) Stress echocardiography expert consensus statement: European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437

    Article  PubMed  Google Scholar 

  23. Mor-Avi V, Lang RM, Badano LP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 24:277–313

    Article  PubMed  Google Scholar 

  24. Sutherland GR, Di Salvo G, Claus P et al (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 17:788–802

    Article  PubMed  Google Scholar 

  25. Reant P, Labrousse L, Lafitte S et al (2008) Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. J Am Coll Cardiol 51:149–157

    Article  PubMed  Google Scholar 

  26. Edvardsen T, Gerber BL, Garot J et al (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans – validation against three-dimensional tagged magnetic resonance imaging. Circulation 106:50–56

    Article  PubMed  Google Scholar 

  27. Voigt JU, Exner B, Schmiedehausen K et al (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107:2120–2126

    Article  PubMed  Google Scholar 

  28. Hanekom L, Cho G-Y, Leano R, Jeffriess L, Marwick TH (2007) Comparison of two-dimensional speckle and tissue Doppler strain measurement during dobutamine stress echocardiography: an angiographic correlation. Eur Heart J 28:1765–1772

    Article  PubMed  Google Scholar 

  29. Ng ACT, Sitges M, Pham PN et al (2009) Incremental value of 2-dimensional speckle tracking strain imaging to wall motion analysis for detection of coronary artery disease in patients undergoing dobutamine stress echocardiography. Am Heart J 158:836–844

    Article  PubMed  Google Scholar 

  30. Yu Y, Villarraga HR, Saleh HK, Cha SS, Pellikka PA (2013) Can ischemia and dyssynchrony be detected during early stages of dobutamine stress echocardiography by 2-dimensional speckle tracking echocardiography? Int J Cardiovasc Imaging 29:95–102

    Article  PubMed  Google Scholar 

  31. Bansal M, Jeffriess L, Leano R, Mundy J, Marwick TH (2010) Assessment of myocardial viability at dobutamine echocardiography by deformation analysis using tissue velocity and speckle-tracking. JACC Cardiovasc Imaging 3:121–131

    Article  PubMed  Google Scholar 

  32. Leung M, Juergens CP, Lo ST, Leung DY (2014) Evaluation of coronary microvascular function by left ventricular contractile reserve with low-dose dobutamine echocardiography. EuroIntervention 9:1202–1209

    Article  PubMed  Google Scholar 

  33. Kawasaki M, Abe S, Tanaka R et al (2013) Assessment of coronary artery disease with real time three-dimensional speckle tracking stress echocardiography with adenosine: a comparative study with thallium scintigraphy and coronary angiography. Circulation 128:22–31

    Google Scholar 

  34. Senior R, Becher H, Monaghan M et al (2009) Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 10:194–212

    Article  PubMed  Google Scholar 

  35. Thomas JD (2013) Myocardial contrast echocardiography perfusion imaging. J Am Coll Cardiol 62:1362–1364

    Article  PubMed  Google Scholar 

  36. Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM et al (2008) American Society of Echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr 21:1179–1201

    Article  PubMed  Google Scholar 

  37. Dolan MS, Riad K, El-Shafei A, Puri S et al (2001) Effect of intravenous contrast for left ventricular opacification and border definition on sensitivity and specificity of dobutamine stress echocardiography compared with coronary angiography in technically difficult patients. Am Heart J 142:908–915

    Article  CAS  PubMed  Google Scholar 

  38. Plana JC, Mikati IA, Dokainish H, Lakkis N, Abukhalil J, Davis R et al (2008) A randomized cross-over study for evaluation of the effect of image optimization with contrast on the diagnostic accuracy of dobutamine echocardiography in coronary artery disease the OPTIMIZE trial. JACC Cardiovasc Imaging 1:145–152

    Article  PubMed  Google Scholar 

  39. Jeetley P, Hickman M, Kamp O et al (2006) Myocardial contrast echocardiography for the detection of coronary artery stenosis – a prospective multicenter study in comparison with single-photon emission computed tomography. J Am Coll Cardiol 47:141–145

    Article  PubMed  Google Scholar 

  40. Senior R, Moreo A, Gaibazzi N et al (2013) Comparison of sulfur hexafluoride microbubble (SonoVue)-enhanced myocardial contrast echocardiography with gated single-photon emission computed tomography for detection of significant coronary artery disease. J Am Coll Cardiol 62:1353–1361

    Article  CAS  PubMed  Google Scholar 

  41. Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D et al (2009) Stress echocardiography expert consensus statement – European Association of Echocardiography (EAE) (a registered branch of the ESC). Eur Heart J 30:278–289

    Article  PubMed  Google Scholar 

  42. Yoshitani H, Takeuchi M, Mor-Avi V et al (2009) Comparative diagnostic accuracy of multiplane and multislice three-dimensional dobutamine stress echocardiography in the diagnosis of coronary artery disease. J Am Soc Echocardiogr 22:437–442

    Article  PubMed  Google Scholar 

  43. Varnero S, Santagata P, Pratali L, Basso M, Gandolfo A, Bellotti P (2008) Head to head comparison of 2D vs real time 3D dipyridamole stress echocardiography. Cardiovasc Ultrasound 6:31

    Article  PubMed Central  PubMed  Google Scholar 

  44. Eroglu E, D’Hooge J, Herbots L et al (2006) Comparison of real-time tri-plane and conventional 2D dobutamine stress echocardiography for the assessment of coronary artery disease. Eur Heart J 27:1719–1724

    Article  PubMed  Google Scholar 

  45. Lethen H, Tries HP, Zuercher H, Lambertz H (2006) Comparison of real-time three-dimensional bicycle stress echocardiography with conventional two-dimensional bicycle stress echo. Eur Heart J 27:98–104

    Google Scholar 

  46. Jenkins C, Haluska B, Marwick TH (2009) Assessment of temporal heterogeneity and regional motion to identify wall motion abnormalities using treadmill exercise stress three-dimensional echocardiography. J Am Soc Echocardiogr 22:268–275

    Article  PubMed  Google Scholar 

  47. Takeuchi M, Otani S, Weinert L, Spencer KT, Lang RM (2006) Comparison of contrast-enhanced real-time live 3-dimensional dobutamine stress echocardiography with contrast 2-dimensional echocardiography for detecting stress-induced wall-motion abnormalities. J Am Soc Echocardiogr 19:294–299

    Article  PubMed  Google Scholar 

  48. Badano LP, Muraru D, Rigo F et al (2010) High volume-rate three-dimensional stress echocardiography to assess inducible myocardial ischemia: a feasibility study. J Am Soc Echocardiogr 23:628–635

    Article  PubMed  Google Scholar 

  49. Aggeli C, Felekos I, Roussakis G et al (2011) Value of real-time three-dimensional adenosine stress contrast echocardiography in patients with known or suspected coronary artery disease. Eur J Echocardiogr 12:648–655

    Article  PubMed  Google Scholar 

  50. Ferrara N, Coltorti F, Leosco D et al (1995) Protective effect of beta-blockade on dipyridamole-induced myocardial ischaemia. Role of heart rate. Eur Heart J 16:903–908

    CAS  PubMed  Google Scholar 

  51. Ferrara N, Longobardi G, Nicolino A et al (1992) Effect of beta-adrenoceptor blockade on dipyridamole-induced myocardial asynergies in coronary artery disease. Am J Cardiol 70:724–727

    Article  CAS  PubMed  Google Scholar 

  52. Longobardi G, Ferrara N, Leosco D et al (1995) Failure of protective effect of captopril and enalapril on exercise and dipyridamole-induced myocardial ischemia. Am J Cardiol 76:255–258

    Article  CAS  PubMed  Google Scholar 

  53. Fioretti PM, Poldermans D, Salustri A et al (1994) Atropine increases the accuracy of dobutamine stress echocardiography in patients taking beta-blockers. Eur Heart J 15:355–360

    Article  CAS  PubMed  Google Scholar 

  54. Dodi C, Pingitore A, Sicari R, Bruno G, Cordovil A, Picano E (1997) Effects of antianginal therapy with a calcium antagonist and nitrates on dobutamine-atropine stress echocardiography. Comparison with exercise electrocardiography. Eur Heart J 18:242–247

    Article  CAS  PubMed  Google Scholar 

  55. Gibbons RJ, Balady GJ, Bricker JT et al (2002) ACC/AHA 2002 guideline update for exercise testing: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 40:1531–1540

    Article  PubMed  Google Scholar 

  56. Fox K, Garcia MA, Ardissino D et al (2006) Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the Management of Stable Angina Pectoris of the European Society of Cardiology. Eur Heart J 27:1341–1381

    Article  PubMed  Google Scholar 

  57. Fazel R, Gerber TC, Balter S et al (2014) Approaches to enhancing radiation safety in cardiovascular imaging: a scientific statement from the American Heart Association. Circulation 130:1730–1748

    Article  PubMed  Google Scholar 

  58. Picano E, Vano E, Rehani MM et al (2014) The appropriate and justified use of medical radiation in cardiovascular imaging: a position document of the ESC Associations of Cardiovascular Imaging, Percutaneous Cardiovascular Interventions and Electrophysiology. Eur Heart J 35:665–672

    Article  PubMed  Google Scholar 

  59. Wolk MJ, Bailey SR, Doherty JU et al (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol 63:380–406

    Article  PubMed  Google Scholar 

  60. Task Force M, Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34:2949–3003

    Article  Google Scholar 

  61. Chou R et al; for the High value care task force of the American College of Physicians (2015) Cardiac screening with electrocardiography, stress echocardiography or myocardial perfusion imaging: advice for high-value care from the American College of Physicians. Ann Intern med 162:438–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Garcia-Fernandez, M.A., Marcos-Alberca, P., Picano, E. (2015). Diagnostic Results and Indications. In: Stress Echocardiography. Springer, Cham. https://doi.org/10.1007/978-3-319-20958-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20958-6_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20957-9

  • Online ISBN: 978-3-319-20958-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics