Skip to main content

Exercise in the Therapy of Diabetes Mellitus

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Principles of Diabetes Mellitus
  • 419 Accesses

Abstract

Physical activity has long been recognized as having beneficial effects for patients with diabetes mellitus. It has been shown that regular exercise results in improved glucose levels, lower HgbA1C, lower blood pressure, and beneficial changes in lipid and coagulation profiles. Most of the benefits of exercise appear to be related to improved insulin sensitivity and require activity that occurs on a regular basis and is associated with depletion of glycogen and lipids in key tissues such as muscle and liver. The beneficial effect of exercise on insulin sensitivity may also be useful in the prevention of progression to overt diabetes in individuals at high risk as well as diminishing the risk of premature cardiovascular disease in those with the so-called metabolic syndrome. Regular exercise is generally safe but can be associated with some risk in patients with established vascular and micro-vascular disease. The major risk of exercise is the development of hypoglycemia in patients on insulin or insulin secretagogues. This is particularly true of patients with type 1 diabetes who may require a more formal exercise prescription and a set of recommendations to exercise safely. Recent advances in insulin administration and especially continuous glucose monitoring may make exercise regimens safer and more widely used in patients at higher risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Vitug A, Schneider SH, Ruderman NB. Exercise and type 1 diabetes mellitus. Exerc Sport Sci Rev. 1988;16:285–304.

    Article  CAS  PubMed  Google Scholar 

  2. Wahren J. Glucose turnover during exercise in healthy man and in patients with diabetes mellitus. Diabetes. 1979;28 Suppl 1:82–8.

    Article  PubMed  Google Scholar 

  3. Wahren J, Felig P, Ahlborg G, et al. Glucose metabolism during leg exercise in man. J Clin Invest. 1971;50:2715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahlborg G, Felig P, Hagenfeldt L, et al. Substrate turnover during prolonged exercise in man. J Clin Invest. 1974;53:1080–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wasserman DH, Zinman B. Exercise in individuals with IDDM (Technical review). Diabetes Care. 1994;17:924–37.

    Article  CAS  PubMed  Google Scholar 

  6. Galbo H, Christensen NJ, Holst JJ. Catecholamines and pancreatic hormones during autonomic blockade in exercising man. Acta Physiol Scand. 1977;101:428–37.

    Article  CAS  PubMed  Google Scholar 

  7. Wasserman DH, Lacy DB, Goldstein RE, et al. Exercise-induced fall in insulin and the increase in fat metabolism during prolonged exercise. Diabetes. 1989;38:484–90.

    Article  CAS  PubMed  Google Scholar 

  8. Moates JM, Lacy DB, Cherrington AD, et al. The metabolic role of the exercise-induced increment in epinephrine. Am J Physiol. 1988;255:E428–36.

    CAS  PubMed  Google Scholar 

  9. Ahlborg G. Mechanism for glycogenolysis in nonexercising human muscle during and after exercise. Am J Physiol. 1985;248:E540–5.

    CAS  PubMed  Google Scholar 

  10. Marliss EB, Simantirakis E, Purdon C, et al. Glucoregulatory and hormonal responses to repeated bouts of intense exercise in normal male subjects. J Appl Physiol. 1991;71:924–33.

    CAS  PubMed  Google Scholar 

  11. Goodyear LJ, King PA, Hirshman MF, et al. Contractile activity increases plasma membrane glucose transporters in absence of insulin. Am J Physiol. 1990;258:E667–72.

    CAS  PubMed  Google Scholar 

  12. Kennedy JW, Hirshman MF, Gervino EV, et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1192–7.

    Article  CAS  PubMed  Google Scholar 

  13. Schenk S, Horowitz J. Acute exercise increases triglyceride synthesis in skeletal muscle and prevents fatty acid-induced insulin resistance. J Clin Invest. 2007;117(6):1690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saltin B, Henriksson J, Nyaard E, et al. Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. In: Milvy P, editor. The marathon: physiological, medical, epidemiological, and psychological studies. Vol. 301. New York: Annals of the New York Academy of Sciences; 1977. p. 3–29.

    Google Scholar 

  15. Saltin B, Rowell LB. Functional adaptations to physical activity and inactivity. Fed Proc. 1980;39:1506–13.

    CAS  PubMed  Google Scholar 

  16. Holloszy JO. Biochemical adaptations to exercise. Aerobic metabolism. In: Wilmore JH, editor. Exercise and sport sciences reviews, vol. 1. New York: New York Academic Press; 1973. p. 4471.

    Google Scholar 

  17. Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol. 1997;273:E1039–51.

    CAS  PubMed  Google Scholar 

  18. Bluher M, Williams CJ, Kloting N, et al. Gene expression of adiponectin receptors in human visceral and subcutaneous adipose tissue is related to insulin resistance and metabolic parameters and is altered in response to physical training. Diabetes Care. 2007;30(12):3110–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kadoglou NP, Iliadis F, Angelopoulou N, et al. The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehab. 2007;14(6):837–43.

    Article  Google Scholar 

  20. Thamer C, Stumvoll M, Niess A, et al. Reduced skeletal muscle oxygen uptake and reduced beta-cell function: two early abnormalities in normal glucose-tolerant offspring of patients with type 2 diabetes. Diabetes Care. 2003;26(7):2126–32.

    Article  PubMed  Google Scholar 

  21. Sriwijitkamol A, Coletta DK, Wajcberg E, et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose–response study. Diabetes. 2007;56(3):836–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zinman B, Murray FT, Vranic M, et al. Glucoregulation during moderate exercise in insulin treated diabetics. J Clin Endocrinol Metab. 1977;45:641–7.

    Article  CAS  PubMed  Google Scholar 

  23. Koivisto VA, Felig P. Effect of leg exercise on insulin absorption in diabetic patients. N Engl J Med. 1978;298:79–83.

    Article  CAS  PubMed  Google Scholar 

  24. Schneider SH, Vitug A, Mertz MAL, et al. Abnormal hormonal response to prolonged exercise in type 1 diabetes. Diabetes. 1987;36(Suppl I):16A, (Abstract).

    Google Scholar 

  25. Wojtaszewski JF, Hansen BF, Kiens B, et al. Insulin signaling in human skeletal muscle: time course and effect of exercise. Diabetes. 1997;46:1775–81.

    Article  CAS  PubMed  Google Scholar 

  26. Richter EA, Mikines KJ, Galbo H, et al. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol. 1989;66:876–85.

    CAS  PubMed  Google Scholar 

  27. Bolli G, DeFeo P, Compagnucci P, et al. Important role of adrenergic mechanism in acute glucose counterregulation following insulin-induced hypoglycemia in type 1 diabetes. Diabetes. 1982;31:641–7.

    Article  CAS  PubMed  Google Scholar 

  28. Berger M, Berchtold P, Cupper HJ, et al. Metabolic and hormonal effects of muscular exercise on juvenile type diabetes. Diabetologia. 1977;13:355–65.

    Article  CAS  PubMed  Google Scholar 

  29. Hagenfeldt L. Metabolism of free fatty acids and ketone bodies during exercise in normal and diabetic man. Diabetes. 1979;28 Suppl 1:66–70.

    Article  CAS  PubMed  Google Scholar 

  30. Mitchell TH, Abraham G, Schiffrin A, et al. Hyperglycemia after intense exercise in IDDM subjects during continuous subcutaneous insulin infusion. Diabetes Care. 1988;11:311–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kriska AM, Blair SN, Pereira MA. The potential role of physical activity in the prevention of non-insulin dependent diabetes mellitus: the epidemiological evidence. In: Holloszy JO, editor. Exercise and sports sciences reviews, vol. 22. Baltimore: Williams and Wilkins; 1994. p. 121–43.

    Google Scholar 

  32. Wallberg-Henriksson H. Exercise and diabetes mellitus. In: Holloszy JO, editor. Exercise and sport sciences reviews, vol. 20. Baltimore: Williams and Wilkins; 1992. p. 339–68.

    Google Scholar 

  33. Minuk HL, Vranic M, Hanna AK, Abisser AM, Zinman B. Glucoregulatory and metabolic response to exercise in obese noninsulin-dependent diabetes. Am J Physiol. 1981;240:E458–64.

    CAS  PubMed  Google Scholar 

  34. Giacca A, Groenewoud Y, Tsui E, et al. Glucose production, utilization, and cycling in response to moderate exercise in obese patients with Type 2 diabetes and mild hyperglycemia. Diabetes. 1998;47:1763–70.

    Article  CAS  PubMed  Google Scholar 

  35. Martin IK, Katz A, Wahren J. Splanchnic and muscle metabolism during exercise in NIDDM patients. Am J Physiol. 1995;269:E583–90.

    CAS  PubMed  Google Scholar 

  36. Wallberg-Henriksson H, Gunnarsson R, Henriksson J, et al. Increased peripheral insulin sensitivity and Muscle mitochondrial enzymes but unchanged blood glucose control in type 1 diabetics after physical training. Diabetes. 1982;31:1044–50.

    Article  CAS  PubMed  Google Scholar 

  37. Schneider SH, Amorosa LF, Khachadurian AK, et al. Studies on the mechanism of improved glucose control during exercise in type 2 (non-insulin dependent) diabetes. Diabetologist. 1984;26:355–60.

    CAS  Google Scholar 

  38. Hollszy JO, Schultz J, Kusnierkiewic J, et al. Effects of exercise on glucose tolerance and insulin resistance. Acta Med Scand Suppl. 1986;711:55–65.

    Google Scholar 

  39. Reitman JS, Vasquez B, Dimes I, et al. Improvement of glucose homeostasis after exercise-training in non-insulin-dependent diabetes. Diabetes Care. 1984;7:434–41.

    Article  CAS  PubMed  Google Scholar 

  40. Dela F, Larsen JJ, Mikines KJ, Ploug T, Petersen LN, Galbo H. Insulin-stimulated muscle glucose clearance in patients with NIDDM: effects of one-legged physical training. Diabetes. 1995;44:1010–20.

    Article  CAS  PubMed  Google Scholar 

  41. Burstein R, Polychronakos C, Toews CJ, MacDoughall JD, Guyda HJ, Posner BI. Acute reversal of enhanced insulin action in trained athletes. Diabetes. 1985;34:750–60.

    Article  Google Scholar 

  42. Miller WJ, Sherman WM, Ivy JL. Effects of strength training on glucose tolerance and post-glucose insulin response. Med Sci Sports Exerc. 1984;16:539–43.

    CAS  PubMed  Google Scholar 

  43. Diabetes mellitus and exercise (ADA position statement). Diabetes Care. 2001;24(Suppl 1):S51–5.

    Google Scholar 

  44. Schneider SH. Long-term exercise programs. In: Ruderman N, Devlin JT, editors. The health professional’s guide to diabetes and exercise. Alexandria: American Diabetes Association; 1995. p. 123–32.

    Google Scholar 

  45. Krottkiewski M, Lonnroth P, Manrwoukas K, et al. Effects on physical training of insulin secretion and effectiveness and glucose metabolism in obesity and type 2 (non-insulin dependent) diabetes mellitus. Diabetologia. 1985;28:881–90.

    Article  Google Scholar 

  46. Yki-Jarvinen H, DeFronzo RA, Koivisto VA. Normalization of insulin sensitivity in type I diabetic subjects by physical training during insulin pump therapy. Diabetes Care. 1984;7:520–7.

    Article  CAS  PubMed  Google Scholar 

  47. Bohn B, Herbst A, Pfeifer M, et al. Impact of physical activity on glycemic control and prevalence of cardiovascular risk factors in adults with type 1 diabetes: a cross-sectional multicenter study of 18,028 patients. Diabetes Care. 2015;38:1536–43.

    Article  PubMed  Google Scholar 

  48. Ruderman NE, Ganda OP, Johansen K. The effect of physical training on glucose tolerance and plasma lipids in maturity onset diabetes. Diabetes. 1979;28:89–91.

    Article  PubMed  Google Scholar 

  49. Schneider SH, Vitug A, Ruderman NB. Atherosclerosis and physical activity. Diabetes Metab Rev. 1986;1:513–53.

    Article  CAS  PubMed  Google Scholar 

  50. Eriksson KF, Lindgarde F. Prevention of type II (noninsulin dependent) diabetes mellitus by diet and physical exercise: the six year Malmo feasibility study. Diabetologia. 1991;34:891–8.

    Article  CAS  PubMed  Google Scholar 

  51. Houmard JA, Bruno NJ, Bruner RK, et al. Effects of exercise training on chemical composition of plasma LDL. Atheroscler Thromb. 1994;14:325–30.

    Article  CAS  Google Scholar 

  52. Krotkiewski M, Mandrousask K, Sjostrom L, et al. Effects of long term physical training on body fat, metabolism and BP in obesity. Metabolism. 1979;28:650–8.

    Article  CAS  PubMed  Google Scholar 

  53. Rocchini AP, Katch V, Schork A, et al. Insulin and blood pressure during weight loss in obese adolescents. Hypertension. 1987;10:267–73.

    Article  CAS  PubMed  Google Scholar 

  54. Schneider SH, Khachadurian AK, Amorosa LF. Ten-year experience with exercise-based outpatient life-style modification program in the treatment of diabetes mellitus. Diabetes Care. 1992;15:1800–10.

    Article  CAS  PubMed  Google Scholar 

  55. Diabetes Prevention Program Research Group. Intensive lifestyle intervention or metformin on inflammation and coagulation in participants with impaired glucose tolerance. Diabetes. 2005;54:1566–72.

    Article  Google Scholar 

  56. NHLBI Obesity Education Initiative expert panel on the identification, evaluation, and treatment of overweight and obesity in adults. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults- the evidence report. Obes Res. 1998;6:51S–310S.

    Google Scholar 

  57. Wing RR. Physical activity in the treatment of the adulthood overweight and obesity: current evidence and research issues. Med Sci Sports Exerc. 1999;31:S547–52.

    Article  CAS  PubMed  Google Scholar 

  58. Helmirch SP, Ragland DR, Leung RW, et al. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med. 1991;325:147–52.

    Article  Google Scholar 

  59. Wing RR. Behavioral strategies for weight reduction in obese type II diabetic patients. Diabetes Care. 1989;12:139–44.

    Article  CAS  PubMed  Google Scholar 

  60. Lee C, Blair S, Jackson A. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69(3):373–80.

    CAS  PubMed  Google Scholar 

  61. Sigal R, Kenny G, Boule N, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147(6):357–69.

    Article  PubMed  Google Scholar 

  62. Wei M, Gibbons L, Kampert J, et al. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Ann Intern Med. 2000;132(8):605–11.

    Article  CAS  PubMed  Google Scholar 

  63. Kohn HW, Gordon NF, Villegas JA, et al. Cardiorespiratory fitness, glycemic status, and mortality risk in men. Diabetes Care. 1992;15:184–92.

    Article  Google Scholar 

  64. Hu FB, Stampfer MJ, Solomon C, et al. Physical activity and risk for cardiovascular events in diabetic women. Ann Intern Med. 2001;134:96–105.

    Article  CAS  PubMed  Google Scholar 

  65. Rena R, Bolin P, Brancati F, Bray G, Clark J. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. The Look AHEAD Research Group. N Engl J Med. 2013;369:145–54.

    Article  CAS  Google Scholar 

  66. Nathan DM, Madnek SF, Dellahanty L. Programming pre-exercise snacks to prevent postexercise hypoglycemia in intensively treated insulin-dependent diabetics. Ann Intern Med. 1985;102:483–6.

    Article  CAS  PubMed  Google Scholar 

  67. Bussau VA, Ferreira LD, Jones TW, et al. The 10-s maximal sprint: a novel approach to counter an exercise-mediated fall in glycemia in individuals with type 1 diabetes. Diabetes Care. 2006;29(3):601–6.

    Article  PubMed  Google Scholar 

  68. Schneider SH, Ruderman NB. Exercise and NIDDM (Technical review). Diabetes Care. 1990;13:785–9.

    Article  Google Scholar 

  69. Sigal R, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes. Diabetes Care. 2006;29:1433–8.

    Article  PubMed  Google Scholar 

  70. Eves N, Plotnikoff R. Resistance training and type 2 diabetes. Diabetes Care. 2006;29:1933–41.

    Article  PubMed  Google Scholar 

  71. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J. 1991;121:293–8.

    Article  CAS  PubMed  Google Scholar 

  72. Stevens R, Kothari V, Adler AI, et al. The UKPDS risk engine: a model for the risk of coronary heart disease in Type 2 diabetes (UKPDS 56). Clin Sci. 2001;101:671–9.

    Article  CAS  PubMed  Google Scholar 

  73. ACC/AHA. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation. 2013;128:873–934.

    Google Scholar 

  74. Wackers FJT, Young LH, Inzucchi SE, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  75. Bax JJ, Young LH, Frye RL, et al. Screening for coronary artery disease in patients with diabetes. Diabetes Care. 2007;30:2729–36.

    Article  PubMed  Google Scholar 

  76. American College of Sports Medicine. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults (Position Stand). Med Sci Sports Exerc. 1998;30:975–91.

    Google Scholar 

  77. Szczypaczewska M, Nazar K, Kaciwba-Uscilko H. Glucose tolerance and insulin response to glucose load in body builders. Int J Sports Med. 1989;10:34–7.

    Article  CAS  PubMed  Google Scholar 

  78. Smutok MA, Reece A, Goldberg AP, et al. Strength training improves glucose tolerance similar to jogging in middle-aged men (letter). Med Sci Sports Exerc. 1989;21 Suppl 2:S33.

    Article  Google Scholar 

  79. Durak EP, Jovanovic-Peterson L, Peterson CM. Randomized crossover study of effect of resistance training on glycemic control, muscular strength and cholesterol in type 1 diabetic men. Diabetes Care. 1990;13:1039–43.

    Article  CAS  PubMed  Google Scholar 

  80. Fletcher GF, Balady G, Froelicher VF, et al. A statement for health professionals from the American Heart Association (Exercise Standards). Circulation. 1995;91:580–612.

    Article  CAS  PubMed  Google Scholar 

  81. King AC, Haskell WL, Taylor CB, et al. Home based exercise training in healthy older men and women. JAMA. 1991;266:1535–42.

    Article  CAS  PubMed  Google Scholar 

  82. Paffenberger RS, Wing AL, Hyde RT. Physical activity as an index of heart attack risk in college alumni. Am J Epidemiol. 1978;108:161–75.

    Google Scholar 

  83. Fletcher GF, Balady G, Blair SN, et al. Benefits and recommendations for physical activity programs for all Americans (Statement on Exercise). Circulation. 1996;94:857–62.

    Article  CAS  PubMed  Google Scholar 

  84. American College of Sports Medicine. Physical activity, physical fitness and hypertension (Position Stand). Med Sci Sports Exerc. 1993;25:i–x.

    Google Scholar 

  85. Francois ME, Baldi JC, Cotter JD. ‘Exercise snacks’ before meals: a novel strategy to improve glycaemic control in individuals with Insulin resistance. Diabetologia. 2014;57:1437–45.

    Article  CAS  PubMed  Google Scholar 

  86. Ruderman NB, Schneider SH, Berchtold P. The metabolically-obese, normal weight individual. Am J Clin Nutr. 1981;34:1617–21.

    CAS  PubMed  Google Scholar 

  87. Ruderman NB, Berchtold P, Schneider SH. Obesity associated disorders in normal weight individuals: some speculations. Int J Obes. 1982;6:151–7.

    PubMed  Google Scholar 

  88. Taylor R. Physical activity and prevalence of diabetes in Melanesian and Indian men in Fiji. Diabetologia. 1984;27:578–82.

    Article  CAS  PubMed  Google Scholar 

  89. Dowse GK, Zimmet PZ, Gareeboo H, et al. Abdominal obesity and physical activity are risk factors for NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Diabetes Care. 1991;14:271–82.

    Article  CAS  PubMed  Google Scholar 

  90. Kawate R, Yamakido M, Nishimoto Y, et al. Diabetes mellitus and its vascular complications in Japanese migrants on the Island of Hawaii. Diabetes Care. 1979;2:161–70.

    Article  CAS  PubMed  Google Scholar 

  91. Kriska AM, Blair SN, Pereira MA. The potential role of physical activity in the prevention of non-insulin dependent diabetes mellitus: the epidemiological evidence. Exerc Sports Sci Rev. 1991;22:121–43.

    Google Scholar 

  92. Hu FB, Sibal RJ, Rich-Edwards JW, et al. Walking compared with vigorous physical activity and risk of type 2 diabetes in women: a prospective study. JAMA. 1999;282:1433–9.

    Article  CAS  PubMed  Google Scholar 

  93. Manson JE, Nathan DM, Krolewski AS, Stampfer MJ, Willett WC, Hennekens CH. A prospective study of exercise and incidence of diabetes among U.S. male physicians. JAMA. 1992;268:63–7.

    Article  CAS  PubMed  Google Scholar 

  94. Pan X, Li G, Hu YH. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Quing IGT and Diabetes Study. Diabetes Care. 1997;20:537–44.

    Article  CAS  PubMed  Google Scholar 

  95. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The Finnish Diabetes Prevention Study Group. N Engl J Med. 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  96. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes mellitus with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  PubMed  Google Scholar 

  97. Eddy D, Schlessinger L, Kahn R. Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005;143:251–64.

    Article  PubMed  Google Scholar 

  98. Kang X, Berman DS, Lewin H, et al. Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. Am Heart J. 1999;137:949–57.

    Article  CAS  PubMed  Google Scholar 

  99. Artal R, Toole MO’. British J Sports Med 2003;376–12.doi:10.1136/bjsm 37.1.6.

    Google Scholar 

  100. Zuspan FP, Ciblis LA, Pose SY. Myometrial and cardiovascular responses to alterations in plasma epinephrine and norepinephrine. Am J Obstet Gynecol. 1962;84:841.

    Article  CAS  PubMed  Google Scholar 

  101. Masaki D, Artal R, Khodignian N, Wiswell R. Bicycle ergometry as a model for carbohydrate utilization in pregnancy. In: Proceedings of the Society for Gynecologic Investigation, p. 84, 1988.

    Google Scholar 

  102. Hollingsworth DR. Maternal metabolism in normal pregnancy and pregnancy complicated by diabetes mellitus. Clin Obstet Gynecol. 1985;28:457–72.

    Article  CAS  PubMed  Google Scholar 

  103. Artal R, Masaki D. Exercise in gestational diabetes. Pract Diabetol. 1989;8(2):7–14.

    Google Scholar 

  104. Kuhl C, Hormones PJ. Endocrine pancreatic function in women with gestational diabetes. Acta Endocrinol. 1986;277(Suppl):19.

    CAS  Google Scholar 

  105. ACOG. Committee on practice bulletins- obstetrics: gestational diabetes. Obstet Gynecol. 2001;98:525–38.

    Article  Google Scholar 

  106. Harris GD. Exercise and the pregnant patient: a clinical overview. Women Health Primary Care. 2005;8:79–86.

    Google Scholar 

  107. Radermecker RP, Fayolle C. Accuracy assessment of online glucose monitoring by a subcutaneous enzymatic glucose sensor during exercise in patients with type 1 diabetes treated by continuous subcutaneous insulin infusion. Diabetes Metab. 2013;39:258–62.

    Article  CAS  PubMed  Google Scholar 

  108. Figueira FR, Umpierre D. Accuracy of continuous glucose monitoring system during exercise in type 2 diabetes. Diabetes Res Clin Pract. 2012;98:e36–9.

    Article  PubMed  Google Scholar 

  109. Yardley JE, Perkins BA. Point accuracy of interstitial continuous glucose monitoring during exercise in type 1 diabetes. Diabetes Technol Ther. 2013;15(1):46–9.

    Article  CAS  PubMed  Google Scholar 

  110. Yardley JE, Iscoe K. Insulin pump therapy is associated with less post- exercise hyperglycemia than multiple daily injections: an observational study of physically active type 1 diabetes patients. Diabetes Technol Ther. 2013;15(1):1–5.

    Article  Google Scholar 

  111. Robertson K, Riddell MC, Guinhouya BC, HAnas R. Exercise in children and adolescents with diabetes. Pediatr Diabetes. 2014;15 Suppl 20:203–23.

    Article  PubMed  Google Scholar 

  112. Brazg RL, Bailey TS, Lee SW. The ASPIRE study: design and methods of an in clinic cross over trial on the efficacy of automatic insulin pump suspension in exercise induced hypoglycemia. J Diabetes Sci Technol. 2011;5(6):1466–71.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Garg S, Brazg RL, Bailey TS, et al. Reduction in duration of hypoglycemia by automatic suspension of Insulin delivery: the in-clinic ASPIRE study. Diabetes Technol Ther. 2014;16:125–30.

    Article  CAS  PubMed  Google Scholar 

  114. Diane T, Tsioli C, Kordonouri O, et al. The PILGRIM study: in silico modeling of a predictive low glucose management system and feasibility in youth with type 1 diabetes during exercise. Diabetes Technol Ther. 2014; 21 (Available from http://www.ncbi.nlm.nih.gov/pubmed/24447074)

  115. Eckel RH, Grundy SM, Zimmet P. The metabolic syndrome. Lancet. 2005;365:1415–28.

    Article  CAS  PubMed  Google Scholar 

  116. Lee DP, Fearon WF, Froelicher VF. Clinical utility of the exercise ECG in patients with diabetes and chest pain. Chest. 2001;119:1576–81.

    Article  CAS  PubMed  Google Scholar 

  117. Hennessy TG, Codd MB, Kane G, et al. Evaluation of patients with diabetes mellitus for coronary artery disease using dobutamine stress echocardiography. Coron Artery Dis. 1997;8:171–4.

    Article  CAS  PubMed  Google Scholar 

Internet Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Ohri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Ohri, A., Vergano, S., Bhambri, R., Schneider, S.H. (2016). Exercise in the Therapy of Diabetes Mellitus. In: Poretsky, L. (eds) Principles of Diabetes Mellitus. Springer, Cham. https://doi.org/10.1007/978-3-319-20797-1_42-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20797-1_42-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20797-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Exercise in the Therapy of Diabetes Mellitus
    Published:
    07 October 2016

    DOI: https://doi.org/10.1007/978-3-319-20797-1_42-2

  2. Original

    Exercise in the Therapy of Diabetes Mellitus
    Published:
    16 June 2016

    DOI: https://doi.org/10.1007/978-3-319-20797-1_42-1