Skip to main content

Toxalbumins

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Critical Care Toxicology

Abstract

Toxalbumins are complex proteins found in certain plant species that are toxic when ingested, inhaled, or administered parenterally. The most common plants containing toxalbumins are Ricinus communis, Abrus precatorius, and Robinia pseudoacacia. Although R. communis and A. precatorius concentrate the toxin within their seeds, the toxic lectins of R. pseudoacacia are found in the bark, seeds, leaves, and roots of the plant. The toxalbumins are summarized in Table 1. The primary toxins in these plants are ricin, abrin, and robin. They are classified as ribosome-inactivating proteins (RIP) and will be described in further detail later in the chapter.

The findings and conclusions in this chapter are those of the author and do not necessarily represent the views of Centers for Disease Control and Prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdu-Aguye I, Sannusi A, Alafiya-Tayo RA, Bhusnurmath SR. Acute toxicity studies with Jatropha curcas L. Hum Toxicol. 1986;5(4):269–74.

    Article  CAS  PubMed  Google Scholar 

  2. Ahmed OM, Adam SE. Toxicity of Jatropha curcas in sheep and goats. Res Vet Sci. 1979;27(1):89–96.

    CAS  PubMed  Google Scholar 

  3. Audi J, Belson M, Patel M, Schier J, Osterloh J. Ricin poisoning: a comprehensive review. JAMA. 2005;294(18):2342–51. doi:10.1001/jama.294.18.2342.

    Article  CAS  PubMed  Google Scholar 

  4. Landolt G, Feige K, Schoberl M. Poisoning of horses by the bark of the false acacia (Robinia pseudoacacia). Schweiz Arch Tierheilkd. 1997;139(8):363–6.

    CAS  PubMed  Google Scholar 

  5. Levin Y, Sherer Y, Bibi H, Schlesinger M, Hay E. Rare Jatropha multifida intoxication in two children. J Emerg Med. 2000;19(2):173–5.

    Article  CAS  PubMed  Google Scholar 

  6. Niyogi SK. The toxicology of Abrus precatorius linnaeus. J Forensic Sci. 1970;15(4):529–36.

    CAS  PubMed  Google Scholar 

  7. Olsnes S. The history of ricin, abrin and related toxins. Toxicon. 2004;44(4):361–70. doi:10.1016/j.toxicon.2004.05.003.

    Article  CAS  PubMed  Google Scholar 

  8. Lord JM, Roberts LM, Robertus JD. Ricin: structure, mode of action, and some current applications. FASEB J. 1994;8(2):201–8.

    CAS  PubMed  Google Scholar 

  9. Schieltz DM, McWilliams LG, Kuklenyik Z, Prezioso SM, Carter AJ, Williamson YM, et al. Quantification of ricin, RCA and comparison of enzymatic activity in 18 Ricinus communis cultivars by isotope dilution mass spectrometry. Toxicon. 2015;95:72–83. doi:10.1016/j.toxicon.2015.01.003.

    Article  CAS  PubMed  Google Scholar 

  10. Spooner RA, Lord JM. Ricin trafficking in cells. Toxins (Basel). 2015;7(1):49–65. doi:10.3390/toxins7010049.

    Article  Google Scholar 

  11. Crompton R, Gall D. Georgi Markov – death in a pellet. Med Leg J. 1980;48(2):51–62.

    CAS  PubMed  Google Scholar 

  12. Simon JD. Biological terrorism. Preparing to meet the threat. JAMA. 1997;278(5):428–30.

    Article  CAS  PubMed  Google Scholar 

  13. United States Army Medical Research Institute of Infectious Diseases. Medical management of biological casualties handbook. 7th ed. Fort Detrick: U.S. Army Medical Research Institute of Infectious Diseases; Washington Supt. of Docs., U.S. G.P.O., distributor; 2011. p. ii, 269 p.

    Google Scholar 

  14. Lockey Jr SD, Dunkelberger L. Anaphylaxis from an Indian necklace. JAMA. 1968;206(13):2900–1.

    Article  PubMed  Google Scholar 

  15. Palatnick W, Tenenbein M. Hepatotoxicity from castor bean ingestion in a child. J Toxicol Clin Toxicol. 2000;38(1):67–9.

    Article  CAS  PubMed  Google Scholar 

  16. Bies C, Lehr CM, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004;56(4):425–35. doi:10.1016/j.addr.2003.10.030.

    Article  CAS  PubMed  Google Scholar 

  17. Friedrich MJ. Loss of nerve: a molecular approach to better treatment of chronic pain. JAMA. 2000;283(2):187–8.

    Article  CAS  PubMed  Google Scholar 

  18. Olsnes S, Sandvig K. How protein toxins enter and kill cells. In: Frankel AE, editor. Immunotoxins. Boston: Kluwer; 1988. p. 39–73.

    Chapter  Google Scholar 

  19. Vitetta ES, Uhr JW. Immunotoxins: redirecting nature’s poisons. Cell. 1985;41(3):653–4.

    Article  CAS  PubMed  Google Scholar 

  20. Centers for Disease Control Prevention. Health advisory alert on ricin. 2008. https://dphhs.mt.gov/Portals/85/publichealth/documents/HAN/2008/HANAD2008-5.pdf

  21. Centers for Disease Control Prevention. Ricin diagnosis and laboratory guidance for clinicians. 2013. http://emergency.cdc.gov/agent/ricin/clinicians/diagnosis.asp

  22. Committee on Environmental Health and Committee on Infectious Diseases. Chemical-biological terrorism and its impact on children. Pediatrics. 2006;118(3):1267–78. doi:10.1542/peds.2006-1700.

    Article  Google Scholar 

  23. Griffiths GD. Understanding ricin from a defensive viewpoint. Toxins (Basel). 2011;3(11):1373–92. doi:10.3390/toxins3111373.

    Article  CAS  Google Scholar 

  24. Poli MA, Roy C, Huebner KD, Franz DR, Jaax NK. Ricin. In: Dembek ZF, editor. Medical aspects of biological warfare. Washington, DC: Borden Institute, Office of the Surgeon General, United States Army Medical Department Center and School; 2007. p. 323–35.

    Google Scholar 

  25. Zilinskas RA. Iraq’s biological weapons. The past as future? JAMA. 1997;278(5):418–24.

    Article  CAS  PubMed  Google Scholar 

  26. United States Federal Select Agent Program. Select agents and toxins list. http://www.selectagents.gov/selectAgentsandToxinsList.html. Accessed 25 Jan 2016.

  27. Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987;262(12):5908–12.

    CAS  PubMed  Google Scholar 

  28. Hegde R, Podder SK. Studies on the variants of the protein toxins ricin and abrin. Eur J Biochem. 1992;204(1):155–64.

    Article  CAS  PubMed  Google Scholar 

  29. Olsnes S, Refsnes K, Pihl A. Mechanism of action of the toxic lectins abrin and ricin. Nature. 1974;249(458):627–31.

    Article  CAS  PubMed  Google Scholar 

  30. Gonzalez TV, Farrant SA, Mantis NJ. Ricin induces IL-8 secretion from human monocyte/macrophages by activating the p38 MAP kinase pathway. Mol Immunol. 2006;43(11):1920–3. doi:10.1016/j.molimm.2005.11.002.

    Article  CAS  PubMed  Google Scholar 

  31. Komatsu N, Nakagawa M, Oda T, Muramatsu T. Depletion of intracellular NAD(+) and ATP levels during ricin-induced apoptosis through the specific ribosomal inactivation results in the cytolysis of U937 cells. J Biochem. 2000;128(3):463–70.

    Article  CAS  PubMed  Google Scholar 

  32. Wong J, Korcheva V, Jacoby DB, Magun BE. Proinflammatory responses of human airway cells to ricin involve stress-activated protein kinases and NF-kappaB. Am J Physiol Lung Cell Mol Physiol. 2007;293(6):L1385–94. doi:10.1152/ajplung.00207.2007.

    Article  CAS  PubMed  Google Scholar 

  33. Bhaskaran M, Didier PJ, Sivasubramani SK, Doyle LA, Holley J, Roy CJ. Pathology of lethal and sublethal doses of aerosolized ricin in rhesus macaques. Toxicol Pathol. 2014;42(3):573–81. doi:10.1177/0192623313492248.

    Article  CAS  PubMed  Google Scholar 

  34. Wong J, Korcheva V, Jacoby DB, Magun B. Intrapulmonary delivery of ricin at high dosage triggers a systemic inflammatory response and glomerular damage. Am J Pathol. 2007;170(5):1497–510. doi:10.2353/ajpath.2007.060703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Figley K, Elrod R. Endemic asthma due to castor bean dust. JAMA. 1928;90:79–82.

    Article  CAS  Google Scholar 

  36. Thorpe SC, Kemeny DM, Panzani RC, McGurl B, Lord M. Allergy to castor bean. II. Identification of the major allergens in castor bean seeds. J Allergy Clin Immunol. 1988;82(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  37. Kaland ME, Klein-Schwartz W, Anderson BD. Toxalbumin exposures: 12 years’ experience of US poison centers. Toxicon. 2015;99:125–9. doi:10.1016/j.toxicon.2015.03.014.

    Article  CAS  PubMed  Google Scholar 

  38. Worbs S, Kohler K, Pauly D, Avondet MA, Schaer M, Dorner MB, et al. Ricinus communis intoxications in human and veterinary medicine-a summary of real cases. Toxins (Basel). 2011;3(10):1332–72. doi:10.3390/toxins3101332.

    Article  CAS  Google Scholar 

  39. Challoner KR, McCarron MM. Castor bean intoxication. Ann Emerg Med. 1990;19(10):1177–83.

    Article  CAS  PubMed  Google Scholar 

  40. Hughes JN, Lindsay CD, Griffiths GD. Morphology of ricin and abrin exposed endothelial cells is consistent with apoptotic cell death. Hum Exp Toxicol. 1996;15(5):443–51.

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Gonzalez JJ, Bartolome-Zavala B, Del Mar Trigo-Perez M, Barcelo-Munoz JM, Fernandez-Melendez S, Negro-Carrasco MA, et al. Pollinosis to Ricinus communis (castor bean): an aerobiological, clinical and immunochemical study. Clin Exp Allergy. 1999;29(9):1265–75.

    Article  CAS  PubMed  Google Scholar 

  42. Garber EA. Toxicity and detection of ricin and abrin in beverages. J Food Prot. 2008;71(9):1875–83.

    CAS  PubMed  Google Scholar 

  43. Felder E, Mossbrugger I, Lange M, Wolfel R. Simultaneous detection of ricin and abrin DNA by real-time PCR (qPCR). Toxins (Basel). 2012;4(9):633–42. doi:10.3390/toxins4090633.

    Article  CAS  PubMed Central  Google Scholar 

  44. Hamelin EI, Johnson RC, Osterloh JD, Howard DJ, Thomas JD. Evaluation of ricinine, a ricin biomarker, from a non-lethal castor bean ingestion. J Anal Toxicol. 2012;36(9):660–2. doi:10.1093/jat/bks077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hodge DR, Prentice KW, Ramage JG, Prezioso S, Gauthier C, Swanson T, et al. Comprehensive laboratory evaluation of a highly specific lateral flow assay for the presumptive identification of ricin in suspicious white powders and environmental samples. Biosecur Bioterror. 2013;11(4):237–50. doi:10.1089/bsp.2013.0053.

    Article  PubMed  Google Scholar 

  46. Huebner M, Wutz K, Szkola A, Niessner R, Seidel M. A glyco-chip for the detection of ricin by an automated chemiluminescence read-out system. Anal Sci. 2013;29(4):461–6.

    Article  CAS  PubMed  Google Scholar 

  47. Johnson RC, Lemire SW, Woolfitt AR, Ospina M, Preston KP, Olson CT, et al. Quantification of ricinine in rat and human urine: a biomarker for ricin exposure. J Anal Toxicol. 2005;29(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  48. Johnson RC, Zhou Y, Jain R, Lemire SW, Fox S, Sabourin P, et al. Quantification of l-abrine in human and rat urine: a biomarker for the toxin abrin. J Anal Toxicol. 2009;33(2):77–84.

    Article  CAS  PubMed  Google Scholar 

  49. Kalb SR, Barr JR. Mass spectrometric detection of ricin and its activity in food and clinical samples. Anal Chem. 2009;81(6):2037–42. doi:10.1021/ac802769s.

    Article  CAS  PubMed  Google Scholar 

  50. Musshoff F, Madea B. Ricin poisoning and forensic toxicology. Drug Test Anal. 2009;1(4):184–91. doi:10.1002/dta.27.

    Article  CAS  PubMed  Google Scholar 

  51. Ramage JG, Prentice KW, Morse SA, Carter AJ, Datta S, Drumgoole R, et al. Comprehensive laboratory evaluation of a specific lateral flow assay for the presumptive identification of abrin in suspicious white powders and environmental samples. Biosecur Bioterror. 2014;12(1):49–62. doi:10.1089/bsp.2013.0080.

    Article  PubMed  Google Scholar 

  52. Roen BT, Opstad AM, Haavind A, Tonsager J. Serial ricinine levels in serum and urine after ricin intoxication. J Anal Toxicol. 2013;37(5):313–7. doi:10.1093/jat/bkt026.

    Article  CAS  PubMed  Google Scholar 

  53. Slotved HC, Sparding N, Tanassi JT, Steenhard NR, Heegaard NH. Evaluating 6 ricin field detection assays. Biosecur Bioterror. 2014;12(4):186–9. doi:10.1089/bsp.2014.0015.

    Article  PubMed  Google Scholar 

  54. Yin HQ, Jia MX, Shi LJ, Liu J, Wang R, Lv MM, et al. Evaluation of a novel ultra-sensitive nanoparticle probe-based assay for ricin detection. J Immunotoxicol. 2014;11(3):291–5. doi:10.3109/1547691X.2013.847994.

    Article  CAS  PubMed  Google Scholar 

  55. Chyka PA, Seger D, Krenzelok EP, Vale JA, American Academy of Clinical Toxicology, European Association of Poisons Centres and Clinical Toxicologists, et al. Position paper: single-dose activated charcoal. Clin Toxicol (Phila). 2005;43(2):61–87.

    Article  CAS  Google Scholar 

  56. Wang CF, Nie XJ, Chen GM, Yu ZH, Li Z, Sun ZW, et al. Early plasma exchange for treating ricin toxicity in children after castor bean ingestion. J Clin Apher. 2015;30(3):141–6. doi:10.1002/jca.21351.

    Article  CAS  PubMed  Google Scholar 

  57. Buonocore C, Alipour M, Omri A, Pucaj K, Smith MG, Suntres ZE. Treatment of ricin A-chain-induced hepatotoxicity with liposome-encapsulated N-acetylcysteine. J Drug Target. 2011;19(9):821–9. doi:10.3109/1061186X.2011.582645.

    Article  CAS  PubMed  Google Scholar 

  58. Muldoon DF, Stohs SJ. Modulation of ricin toxicity in mice by biologically active substances. J Appl Toxicol. 1994;14(2):81–6.

    Article  CAS  PubMed  Google Scholar 

  59. Rasooly R, He X, Friedman M. Milk inhibits the biological activity of ricin. J Biol Chem. 2012;287(33):27924–9. doi:10.1074/jbc.M112.362988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pincus SH, Smallshaw JE, Song K, Berry J, Vitetta ES. Passive and active vaccination strategies to prevent ricin poisoning. Toxins (Basel). 2011;3(9):1163–84. doi:10.3390/toxins3091163.

    Article  CAS  Google Scholar 

  61. Roy CJ, Brey RN, Mantis NJ, Mapes K, Pop IV, Pop LM, et al. Thermostable ricin vaccine protects rhesus macaques against aerosolized ricin: Epitope-specific neutralizing antibodies correlate with protection. Proc Natl Acad Sci U S A. 2015;112(12):3782–7. doi:10.1073/pnas.1502585112.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Smallshaw JE, Vitetta ES. Ricin vaccine development. Curr Top Microbiol Immunol. 2012;357:259–72. doi:10.1007/82_2011_156.

    CAS  PubMed  Google Scholar 

  63. Pincus SH, Das A, Song K, Maresh GA, Corti M, Berry J. Role of Fc in antibody-mediated protection from ricin toxin. Toxins (Basel). 2014;6(5):1512–25. doi:10.3390/toxins6051512.

    Article  CAS  Google Scholar 

  64. Sully EK, Whaley KJ, Bohorova N, Bohorov O, Goodman C, Kim do H, et al. Chimeric plantibody passively protects mice against aerosolized ricin challenge. Clin Vaccine Immunol. 2014;21(5):777–82. doi:10.1128/CVI.00003-14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wahome PG, Robertus JD, Mantis NJ. Small-molecule inhibitors of ricin and Shiga toxins. Curr Top Microbiol Immunol. 2012;357:179–207. doi:10.1007/82_2011_177.

    CAS  PubMed  Google Scholar 

  66. Barbier J, Bouclier C, Johannes L, Gillet D. Inhibitors of the cellular trafficking of ricin. Toxins. 2012; 4(1):15–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Oakes .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Oakes, J.A., Wang, R.Y. (2016). Toxalbumins. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_98-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_98-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Toxalbumins
    Published:
    01 September 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_98-2

  2. Original

    Toxalbumins
    Published:
    11 May 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_98-1