Skip to main content

Withdrawal Syndromes

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

The use of mind-altering substances predates written history. As a consequence, so do the withdrawal syndromes associated with the abrupt cessation of these substances. The discussion of withdrawal requires defining the following terms: narcotic, tolerance, dependence, addiction, withdrawal, and cross-tolerance. Defining these words not only allows for better understanding but also enables the appropriate application of these terms. Narcotic literally means any drug that induces sleep, although it also has the socio-legal implication of an illegal substance. For the purpose of maintaining clarity, drugs should be referred to by their clinical class (i.e., opioids, sedative-hypnotics, and stimulants [e.g., cocaine and amphetamines]). Tolerance is the process by which increasing drug dosages are required to obtain a desired effect and can be represented graphically by a shift in the dose-response curve to the right. This effect is exemplified by heroin tolerance, in which a tolerant person’s routine dose would be lethal to a naïve user. Tolerance can be mediated via receptor modulation (opioids), induced metabolism (barbiturates), or both (ethanol). Dependence implies that cessation of the drug leads to withdrawal symptoms. Withdrawal can be physical (i.e., autonomic instability, nausea, vomiting, diarrhea, hyperactivity, or altered mentation), psychological (i.e., emotional symptoms and craving), or both. Withdrawal is a response to lowered drug concentrations resulting in a predictable constellation of symptoms (e.g., tremor, hypertension, nausea, vomiting, and diarrhea). These symptoms are reversible if the drug in question is reintroduced. Not all withdrawal symptoms are negative or unpleasant. Piloerection, yawning, and lacrimation are associated with opioid withdrawal, but most patients do not perceive these symptoms as negative compared with their drug craving, nausea, and vomiting. When continued use of a drug induces socially unacceptable behavior (theft) or results in unacceptable outcomes (a driving-while-intoxicated conviction), the user of the drug is considered addicted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. National Institute on Alcohol Abuse and Alcoholism. Available at http://www.niaaa.nih.gov. Accessed Mar 2015.

  2. National Institute on Drug Abuse. Available at http://www.drugabuse.gov. Accessed Aug 2015.

  3. Conde Lopez VJ, Plaza Nieto JF, Macias Fernandez JA, et al. Historical study of seven cases of delirium tremens in Spain in the first half of the XIX century. Actas Luso Esp Neurol Psiquiatr Cienc Afines. 1995;23:200–16.

    CAS  PubMed  Google Scholar 

  4. Osler W. The principles and practice of medicine. 8th ed. New York: Appleton; 1916. p. 398–400.

    Google Scholar 

  5. Victor M, Adams RD. The effect of alcohol on the nervous system. Res Publ Assoc Res Nerv Ment Dis. 1953;32:526–73.

    CAS  PubMed  Google Scholar 

  6. Isbell H, Fraser HF, Wikler A, et al. An experimental study of the etiology of “rum fits” and delirium tremens. Q J Stud Alcohol. 1955;16:1–33.

    CAS  PubMed  Google Scholar 

  7. Tavel ME. A new look at an old syndrome: delirium tremens. Arch Intern Med. 1962;109:129–34.

    Article  CAS  PubMed  Google Scholar 

  8. Thomas DW, Freedman DX. Treatment of alcohol withdrawal syndrome: comparison of promazine and paraldehyde. JAMA. 1964;188:316–8.

    CAS  PubMed  Google Scholar 

  9. Sellers EM, Kalant H. Alcohol intoxication and withdrawal. N Engl J Med. 1976;294:757–69.

    Article  PubMed  Google Scholar 

  10. Lieber CS. Medical disorders of alcoholism. N Engl J Med. 1995;333:1058–65.

    Article  CAS  PubMed  Google Scholar 

  11. United Nations Office on Drugs and Crime, World Drug Report 2014 (United Nations publication, Sales No. E.14.XI.7).

    Google Scholar 

  12. Krogsgaard-Larsen P, Scheel-Kruger J, Kofod H, editors. GABA-neurotransmitters: pharmacological, biochemical and pharmacological aspects. New York: Academic; 1979. p. 102–3.

    Google Scholar 

  13. Squires RF, editor. GABA and benzodiazepine receptors, vol. 1. Boca Raton: CRC Press; 1991. p. 2–10.

    Google Scholar 

  14. MacDermott AB, Mayer ML, Westbrook GL, et al. NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurons. Nature. 1986;321:519–22.

    Article  CAS  PubMed  Google Scholar 

  15. Sivilotti L, Nistri A. GABA receptor mechanisms in the CNS. Prog Neurobiol. 1991;36:35–92.

    Article  CAS  PubMed  Google Scholar 

  16. Snead OC. Evidence for a G protein-coupled gamma-hydroxybutyric acid receptor. J Neurochem. 2000;75:1986–96.

    Article  CAS  PubMed  Google Scholar 

  17. Wick MJ, Mihic SJ, Ueno S, et al. Mutations of gamma-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc Natl Acad Sci U S A. 1998;95:6504–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mascia MP, Trudell JR, Harris RA. Specific binding sites for alcohols and anesthetics on ligand-gated ion channels. Proc Natl Acad Sci U S A. 2000;97:9305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Devaud LL, Fritschy JM, Sieghart W, Morrow AL. Bidirectional alterations of GABA(A) receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal. J Neurochem. 1997;69(1):126–30.

    Article  CAS  PubMed  Google Scholar 

  20. Steffensen SC, Nie Z, Criado JR, et al. Ethanol inhibition of N-methyl-d-aspartate responses involves presynaptic gamma-aminobutyric acid(B) receptors. J Pharmacol Exp Ther. 2000;294:637–47.

    CAS  PubMed  Google Scholar 

  21. Martin D, Lodge D. Ketamine acts as a non-competitive N-methyl-d-aspartate antagonist on frog spinal cord in vitro. Neuropharmacology. 1985;24:999–1003.

    Article  CAS  PubMed  Google Scholar 

  22. Thornberg SA, Saklad SR. A review of NMDA receptors and the phencyclidine model of schizophrenia. Pharmacotherapy. 1996;16:82–93.

    CAS  PubMed  Google Scholar 

  23. Tortella FC, Ferkany JW, Pontecorvo MJ. Anticonvulsant effects of dextrorphan in rats, possible involvement in dextromethorphan-induced seizure protection. Life Sci. 1988;42:2509–14.

    Article  CAS  PubMed  Google Scholar 

  24. Minami MJ, Satoh M. Molecular biology of the opioid receptors: structures, functions and distributions. Neurosci Res. 1995;23:121–45.

    Article  CAS  PubMed  Google Scholar 

  25. Grudt TJ, Williams JT. Kappa-opioid receptors also increase potassium conductance. Proc Natl Acad Sci U S A. 1993;90:11429–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. North RA, Williams JT, Surprenant A, et al. Mu and sigma receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A. 1987;84:5487–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piros E, Prather P, Law P, et al. Calcium channel and adenylyl cyclase modulation by cloned mu opioid receptors in GH3 cells. Mol Pharmacol. 1995;47:1041–9.

    CAS  PubMed  Google Scholar 

  28. Glue P, Nutt D. Overexcitement and disinhibition: dynamic neurotransmitter interactions in alcohol withdrawal. Br J Psychiatry. 1990;157:491–9.

    Article  CAS  PubMed  Google Scholar 

  29. Chirstie MJ, Williams JT, North RA. Cellular mechanism of opioid tolerance: studies in single brain neurons. Mol Phamacol. 1987;32:633–8.

    Google Scholar 

  30. Crain SM, Shen KF. Modulatory effects of Gs-coupled excitatory opioid receptor functions on analgesia, tolerance and dependence. Neurochem Res. 1996;21:1347–51.

    Article  CAS  PubMed  Google Scholar 

  31. Maldonado R, Blendy JA, Tzavar E, et al. Reduction of morphine abstinence in mice with mutation in the gene encoding CREB. Science. 1996;273:657–9.

    Article  CAS  PubMed  Google Scholar 

  32. Dyer JE, Roth B, Hyma BA. Gamma-hydroxybutyrate withdrawal syndrome. Ann Emerg Med. 2001;37:147–53.

    Article  CAS  PubMed  Google Scholar 

  33. Gossop M, Strang J. A comparison of the withdrawal responses of heroin and methadone addicts during detoxification. Br J Psychiatry. 1991;158:697–9.

    Article  CAS  PubMed  Google Scholar 

  34. Satel SL, Price LH, Palumbo JM, et al. Clinical phenomenology and neurobiology of cocaine abstinence: a prospective inpatient study. Am J Psychiatry. 1991;148:495–8.

    Article  CAS  PubMed  Google Scholar 

  35. Lago JA, Kosten TR. Stimulant withdrawal. Addiction. 1994;89:1477–81.

    Article  CAS  PubMed  Google Scholar 

  36. Dackis CA, Gold MS. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci Biobehav Rev. 1985;9:469–77.

    Article  CAS  PubMed  Google Scholar 

  37. Pilotte NS, Sharpe LG, Roundtree SD, et al. Cocaine withdrawal reduces dopamine transporter binding in the shell of the nucleus accumbens. Synapse. 1996;1:87–92.

    Article  Google Scholar 

  38. Robe LB, Gromisch DS, Iosub S. Symptoms of neonatal ethanol withdrawal. Curr Alcohol. 1981;8:485–93.

    CAS  PubMed  Google Scholar 

  39. Coles CD, Smith IE, Fernhoff PM, et al. Neonatal ethanol withdrawal: characteristics in clinically normal, nondysmorphic neonates. J Pediatr. 1984;105:445–51.

    Article  CAS  PubMed  Google Scholar 

  40. Zelson C, Lee SJ, Casalino M. Neonatal narcotic addiction: comparative effects of maternal intake of heroin and methadone. N Engl J Med. 1973;289:1216–20.

    Article  CAS  PubMed  Google Scholar 

  41. Vinson DC, Menezes M. Admission alcohol level: a predictor of the course of alcohol withdrawal. J Fam Pract. 1991;33:161–7.

    CAS  PubMed  Google Scholar 

  42. Feussner KR. Computed tomography brain scanning in alcohol withdrawal seizures. Ann Intern Med. 1981;94:519–24.

    Article  CAS  PubMed  Google Scholar 

  43. Earnest MP, Feldman H, Marx JA, et al. Intracranial lesions shown by CT scans in 259 cases of first alcohol-related seizures. Neurology. 1988;38:1561–5.

    Article  CAS  PubMed  Google Scholar 

  44. DiPaula B, Tommasello A, Solounias B, et al. An evaluation of intravenous ethanol in hospitalized patients. J Subst Abuse Treat. 1998;15:437–42.

    Article  CAS  PubMed  Google Scholar 

  45. Thompson WL, Johnson AD, Maddrey WL, et al. Diazepam and paraldehyde for treatment of severe delirium tremens: a controlled trial. Ann Intern Med. 1975;82:175–80.

    Article  CAS  PubMed  Google Scholar 

  46. Mayo-Smith MF. Pharmacological management of alcohol withdrawal: a meta-analysis and evidence-based practice guideline. American Society of Addiction Medicine Working Group on Pharmacological Management of Alcohol Withdrawal. JAMA. 1997;278:144–51.

    Article  CAS  PubMed  Google Scholar 

  47. Manikant S, Tripathi BM, Chavan BS. Loading dose diazepam therapy for alcohol withdrawal state. Indian J Med Res. 1993;98:170–3.

    CAS  PubMed  Google Scholar 

  48. Sellers EM. Clinical pharmacology and therapeutics of benzodiazepines. Can Med Assoc J. 1978;118:1533–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Saitz R, Mayo-Smith MF, Roberts MS, et al. Individualized treatment for alcohol withdrawal: a randomized double blind controlled trial. JAMA. 1994;272:519–23.

    Article  CAS  PubMed  Google Scholar 

  50. Hemmingsen R, Kramp P, Rafaelsen OJ. Delirium tremens and related clinical states: aetiology, pathophysiology and treatment. Acta Psychiatr Scand. 1979;59:337–69.

    Article  CAS  PubMed  Google Scholar 

  51. Ives TJ, Mooney 3rd AJ, Gwyther RE. Pharmacokinetic dosing of phenobarbital in the treatment of alcohol withdrawal syndrome. South Med J. 1991;84:18–21.

    Article  CAS  PubMed  Google Scholar 

  52. Rosenson J, Clements C, Simon B, Vieaux J, Graffman S, Vahidnia F, Cisse B, Lam J, Alter H. Phenobarbital for acute alcohol withdrawal: a prospective randomized double-blind placebo-controlled study. J Emerg Med. 2013;44(3):592–8.

    Article  PubMed  Google Scholar 

  53. Gallimberti L, Canton G, Gentile N, et al. Gamma-hydroxybutyric acid for treatment of alcohol withdrawal syndrome. Lancet. 1989;2:787–9.

    Article  CAS  PubMed  Google Scholar 

  54. Lenzenhuber E, Muller C, Rommelspacher H, Spies C. Gamma-hydroxybutyrate for treatment of alcohol withdrawal syndrome in intensive care patients: a comparison between two symptom-oriented therapeutic concepts. Anaesthetist. 1999;48:89–96.

    Article  CAS  Google Scholar 

  55. Addolorato G, Balducci G, Capristo E, et al. Gamma-hydroxybutyric acid (GHB) in the treatment of alcohol withdrawal syndrome: a randomized comparative study versus benzodiazepine. Alcohol Clin Exp Res. 1999;23:1596–604.

    CAS  PubMed  Google Scholar 

  56. Malcolm R, Ballenger JC, Sturgis ET, Anton R. Double-blind controlled trial comparing carbamazepine to oxazepam treatment of alcohol withdrawal. Am J Psychiatry. 1989;146(5):617–21.

    Article  CAS  PubMed  Google Scholar 

  57. Minozzi S, Amato L, Vecchi S, Davoli M. Anticonvulsants for alcohol withdrawal. Cochrane Database Syst Rev. 2010;(3):CD005064.

    Google Scholar 

  58. Coomes TR, Smith SW. Successful use of propofol in refractory delirium tremens. Ann Emerg Med. 1997;30:825–8.

    Article  CAS  PubMed  Google Scholar 

  59. McCowan C, Marik P. Refractory delirium tremens treated with propofol: a case series. Crit Care Med. 2000;28:1781–4.

    Article  CAS  PubMed  Google Scholar 

  60. Orser BA, Bertlik M, Wang LY, et al. Inhibition by propofol (2,6 di-isopropylphenol) of the N-methyl-d-aspartate subtype of glutamate receptor in cultured hippocampal neurons. Br J Pharmacol. 1995;116:1761–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wong A, Benedict NJ, Armahizer MJ, Kane-Gill SL. Evaluation of adjunctive ketamine to benzodiazepines for management of alcohol withdrawal syndrome. Ann Pharmacother. 2015;49(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  62. Schmidt KJ, Doshi MR, Holzhausen JM, Natavio A, Cadiz M, Winegardner JE. A review of the treatment of severe alcohol withdrawal. Ann Pharmacother. 2016. pii: 1060028016629161. [Epub ahead of print] Review.

    Google Scholar 

  63. Adinoff B. Double-blind study of alprazolam, diazepam, clonidine and placebo in the alcohol withdrawal syndrome. Alcohol Clin Exp Res. 1994;18:873–8.

    Article  CAS  PubMed  Google Scholar 

  64. Horwitz RI, Gottlieb LD, Kraus ML. The efficacy of atenolol in the outpatient management of the alcohol withdrawal syndrome: results of a randomized clinical trial. Arch Intern Med. 1989;149:1089–93.

    Article  CAS  PubMed  Google Scholar 

  65. Blum K, Eubanks JD, Wallace JE, et al. Enhancement of alcohol withdrawal convulsions in mice by haloperidol. Clin Toxicol. 1976;9:427–34.

    Article  CAS  PubMed  Google Scholar 

  66. Greenblatt DJ, Gross PL, Harris J, et al. Fatal hyperthermia following haloperidol therapy of sedative-hypnotic withdrawal. J Clin Psychiatry. 1978;39:673–5.

    CAS  PubMed  Google Scholar 

  67. Gold MS, Redmond ED, Kleber HD. Clonidine blocks acute opioid withdrawal symptoms. Lancet. 1978;2:599–602.

    Article  CAS  PubMed  Google Scholar 

  68. Uhde TW, Redmond Jr DE, Kleber HD. Clonidine suppresses the opioid abstinence syndrome without clonidine-withdrawal symptoms: a blind inpatient study. Psychiatry Res. 1980;2:37–47.

    Article  CAS  PubMed  Google Scholar 

  69. Gibert-Rahola J, Maldonado R, Mico JA, et al. Comparative study in mice of flunitrazepam vs diazepam on morphine withdrawal syndrome. Prog Neuropsychopharmacol Biol Psychiatry. 1988;12:927–33.

    Article  CAS  PubMed  Google Scholar 

  70. Pinelli A, Trivulzio S, Tomasoni L. Effects of ondansetron administration on opioid withdrawal syndrome observed in rats. Eur J Pharmacol. 1997;340:111–9.

    Article  CAS  PubMed  Google Scholar 

  71. Albertson TE, Chenoweth J, Ford J, Owen K, Sutter ME. Is it prime time for alpha2-adrenocepter agonists in the treatment of withdrawal syndromes? J Med Toxicol. 2014;10(4):369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adhi N. Sharma or Robert S. Hoffman .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Sharma, A.N., Hoffman, R.S. (2016). Withdrawal Syndromes. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_97-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_97-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics