Skip to main content

Asian Snakes

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

Asia, the largest landscape on Earth, provides habitat to the majority of Earth’s human beings as well as to a colossal diversity of snakes. More than 150 venomous species, representing several snake families: the Viperidae (e.g., vipers, pit vipers, and Fea’s viper), the Elapidae (e.g., kraits, cobras, king cobras, and Asian coral snakes), and the broad assemblage previously contained within Family Colubridae (e.g., non-front-fanged-colubrids (NFFC snakes), including “rear-fanged” snakes) are known to exist.

This is an update and expansion of chapters written by Michael V. Callahan, Charles Lee, and Richard Y Wang for the first edition of this book

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Chippaux JP. Snake-bites: appraisal of the global situation. Bull World Health Organ. 1998;76:515–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghose A, Faiz MA. Snake envenomation in Bangladesh. In: Gopalakrishnakone P, Faiz A, Gnanathasan CA, Habib AG, Fernando R, Yang C-C, editors. Clinical toxinology in Asia Pacific and Africa. Dordrecht: Springer; 2015. p. 233–49. doi:10.1007/978-94-007-6288-6_25-1.

    Google Scholar 

  3. Hasan SMK, Basher A, Molla AA, Sultana NK, Faiz MA. The impact of snake bite on household economy in Bangladesh. Trop Doct. 2012;42(1):41–3. doi:10.1258/td.2011.110137.

    Article  CAS  PubMed  Google Scholar 

  4. Ariaratnam CA, Sheriff MH, Arambepola C, Theakston RD, Warrell DA. Syndromic approach to treatment of snake bite in Sri Lanka based on results of a prospective national hospital-based survey of patients envenomed by identified snakes. Am J Trop Med Hyg. 2009;81(4):725–31. doi:10.4269/ajtmh.2009.09-0225.

    Article  PubMed  Google Scholar 

  5. Tun-Pe, Ba-Aye, Aye-Aye-Myint, Tin-Nu-Swe, Warrell DA. Bites by Russell’s vipers (Daboia russelii siamensis) in Myanmar: effect of the snake’s length and recent feeding on venom antigenaemia and severity of envenoming. Trans R Soc Trop Med Hyg. 1991;85(6):804–8.

    Article  CAS  PubMed  Google Scholar 

  6. Callahan MC, Pitts RM, King RE. Exotic snake envenoming in the United States. Alabama Center for Envenomation. Proceedings of the Southern Medical Society, Birmingham, Sept 1986.

    Google Scholar 

  7. Chanhome L, Cox MJ, Wilde H, Jintakoon P, Chaiyabutr N, Sitprija V. Venomous snakebite in Thailand: I. Medically important snakes. Mil Med. 1998;163:310–7.

    CAS  PubMed  Google Scholar 

  8. Kini RM, Iwanaga S. Structure-function relationships of phospholipase II: charge density distribution and the myotoxicity of presynaptic neurotoxic phospholipases. Toxicon. 1986;24:895–905.

    Article  CAS  PubMed  Google Scholar 

  9. Bjarnason JB, Fox JW. Hemorrhagic metalloproteinases from snake venoms. Pharmacol Ther. 1994;62:325–72.

    Article  CAS  PubMed  Google Scholar 

  10. Gould RJ, Polokoff MA, Friedman PA, Huang TF, Holt JC, Cook JJ, Niewiarowski S. Disintegrins – a family of integrin inhibitory proteins from viper venoms. Proc Soc Exp Biol Med. 1990;195:168–71.

    Article  CAS  PubMed  Google Scholar 

  11. Garfin SR, Castilonia RR, Mubarak SJ. Rattlesnake bites and surgical decompression: results using a laboratory model. Toxicon. 1984;22:177–82.

    Article  CAS  PubMed  Google Scholar 

  12. Jayanthi GP, Gowda TV. Geographical variation in India in the composition and lethal potency of Russell’s viper venom. Toxicon. 1988;26(3):257–64.

    Article  CAS  PubMed  Google Scholar 

  13. Phillips RE, Theakston RD, Warrell DA, Galigedara Y, Abeysekera DT, Dissanayaka P, et al. Paralysis, rhabdomyolysis and haemolysis caused by bites of Russell’s viper (Vipera russelli pulchella) in Sri Lanka: failure of Indian (Haff kine) antivenom. Q J Med. 1988;68(257):691–716.

    CAS  PubMed  Google Scholar 

  14. Moore TC. Snakebite from the Korean pit viper. Mil Med. 1977;142:546–9.

    CAS  PubMed  Google Scholar 

  15. Sun XS. Successful treatment of 9 cases of respiratory paralysis caused by Pallas pit viper bite. Zhonghua Yi Xue Za Zhi. 1981;61:362–5.

    CAS  PubMed  Google Scholar 

  16. Shanghai Vaccine & Serum Institute. Agkistrodon halys bite treated with specific antivenin: observation of 530 cases. Chin Med J. 1976;2:59–62.

    Google Scholar 

  17. Tateno I, Sa Wai Y, Makino M. Current status of Mamushi snake (Agkistrodon halys) bite in Japan with special reference to severe and fatal cases. Jap J Exp Med. 1963;33:331–46.

    CAS  PubMed  Google Scholar 

  18. Zhao E-M, Wu G, Yang W. Comparisons of toxicity and neutralization test among Pallas’ viper and black eye-brow pit viper. Acta Herpetol Sin. 1979;1:1–6.

    Google Scholar 

  19. Sawai Y. Snakebites by Korean Mamushi in Japan. Snake. 1975;7:40–1.

    Google Scholar 

  20. Chen Y-C. Venomous snake bites and snake venom research in China. In: Gopalakrishnakone P, Chou LM, editors. Snakes of medical importance (Asia-Pacific region). Singapore: National University of Singapore; 1990. p. 269–79.

    Google Scholar 

  21. Wuster W, Otsuka S, Malhotra A, Thorpe RS. Population systematics of Russell’s viper: a multivariate study. Biol J Linn Soc. 1992;47:97–113.

    Article  Google Scholar 

  22. Than-Than, Hutton RA, Myint-Lwin, Khin-Ei-Han, Soe-Soe, Tin-Nu-Swe, et al. Haemostatic disturbances in patients bitten by Russell’s viper (Vipera russelli siamensis) in Burma. Br J Haematol. 1988;69(4):513–20.

    Article  CAS  PubMed  Google Scholar 

  23. Faiz MA, Falkous G, Harris JB, Mantle D. Comparison of protease and related enzyme activities in snake venoms. Comp Biochem Physiol B Biochem Mol Biol. 1996;113:99–204.

    Article  Google Scholar 

  24. Prasad NB, Uma B, Bhatt SK, Gowda VT. Comparative characterisation of Russell’s viper (Daboia/Vipera russelli) venoms from different regions of the Indian peninsula. Biochim Biophys Acta. 1999;1428(2–3):121–36.

    Article  CAS  PubMed  Google Scholar 

  25. Tsai IH, Tsai HY, Wang YM, Tun-Pe, Warrell DA. Venom phospholipases of Russell’s vipers from Myanmar and eastern India – Cloning, characterization and phylogeographic analysis. Biochim Biophys Acta. 2007;1774(8):1020–8.

    Article  CAS  PubMed  Google Scholar 

  26. Warrell DA. Tropical snake bite: clinical studies in South East Asia. In: Harris JB, editor. Natural toxins. Animal, plant and microbial. Oxford: Clarendon; 1986. p. 25–45.

    Google Scholar 

  27. Warrell DA. Russell’s viper: biology, venom and treatment of bites. Trans Roy Soc Trop Med Hyg. 1989;83(6):732–40.

    Article  CAS  PubMed  Google Scholar 

  28. Warrell DA. Geographical and intraspecies variation in the clinical manifestations of envenoming by snakes. In: Thorpe RS, Wüster W, Malhotra A, editors. Venomous snakes. Ecology, evolution and snakebite. Oxford: Clarendon; 1997. p. 189–203.

    Google Scholar 

  29. Phillips RE, Tun-Pe, Warrell DA, Moore RA, Tin-Nu-Swe, Myint-Lwin, Burke CW. Acute and chronic pituitary failure resembling Sheehan’s syndrome following bites by Russell’s viper in Burma. Lancet. 1987;2(8562):763–7.

    PubMed  Google Scholar 

  30. Maung-Maung-Aye. Some experience in the management of snakebite. Burma Med J. 1972;20:33–40.

    Google Scholar 

  31. Thein-Than, Tin-Tun, Hla-Pe. Development of renal function abnormalities following Russell’s viper (Vipera russelli siamensis) bite in Myan-mar. Trans R Soc Trop Med Hyg. 1991;85:404–9.

    Article  CAS  PubMed  Google Scholar 

  32. Belt PJ, Malhotra A, Thorpe RS. Russell’s viper in Indonesia: snakebite and systematics. In: Thorpe RS, Wuster W, Malhotra A, editors. Venomous snakes: ecology, evolution and snakebite, Symposia of the Zoological Society of London, vol. 70. Oxford: Clarendon; 1997. p. 219–33.

    Google Scholar 

  33. Ghose A, Amin MR, Haq MA, Islam A, Chowdhury FR, Miah T, et al. Russell’s viper (Daboia Russelii): a newly recognized cause of Neuro-myo-renal toxic envenomation in Bangladesh. In: Warrell DA, Rowan EG, editors. 18th world congress of the international society on toxinology; 2015 Sept 25–30. Oxford: Elselvier; 2015. p. 91.

    Google Scholar 

  34. Joseph JK, Menon JC, Jose MP, Kendre PP. Morbibidity and mortality related to capillary leak syndrome in Daboia russelli bite. In: Warrell DA, Rowan EG, editors. 18th world congress of the international society on toxinology; 2015 Sept 25–30. Oxford: Elselvier; 2015. p. 88.

    Google Scholar 

  35. Wall AJ. Indian snake poisons, their nature and effects. London: WH Allen & Co; 1883.

    Book  Google Scholar 

  36. Maung-Maung-Aye. Snakes of Burma with venomology and envenomation. Rangoon: Arts & Science University; 1976.

    Google Scholar 

  37. Than-Than, Francis N, Tin-Nu-Swe, Myint-Lwin, Tun-Pe, Soe-Soe, et al. Contribution of focal haemorrhage and microvascular fibrin deposition to fatal envenoming by Russell’s viper (Vipera russelli siamensis) in Burma. Clinicopathological studies. Acta Trop Basel. 1989;46:23–8.

    Article  CAS  PubMed  Google Scholar 

  38. Matthai TP, Date A. Acute renal failure in children following snakebite. Ann Trop Paediatr. 1981;1:73–6.

    Article  CAS  PubMed  Google Scholar 

  39. Date A, Pulimood R, Jacob CK, Kirubakaran MG, Shastry JC. Haemolytic-uraemic syndrome complicating snake bite. Nephron. 1986;42:89–90.

    Article  CAS  PubMed  Google Scholar 

  40. Chen H-C, Lai Y-H, Tsai J-H. Acute renal failure following Russell’s viper envenomation: a report of two cases. Kaohshiung J Med Sci. 1988;4:467–72.

    CAS  Google Scholar 

  41. Looareesuwan S, Van Vira C, Warrell DA. Factors contributing to fatal snake bite in the rural tropics: analysis of 46 cases in Thailand. Trans R Soc Trop Med Hyg. 1988;82:930–4.

    Article  CAS  PubMed  Google Scholar 

  42. Win-Aung, Khin-Pa-Pa-Kyaw, Baby-Hla, Saw-Sandar-Aye, Saw-Phone-Naing, Aye-Kyaw. Renal involvement in Russell’s viper bite patients without disseminated intravascular coagulation. Trans R Soc Trop Hyg. 1998;92:322–4.

    Article  CAS  Google Scholar 

  43. Sitprija V, Chaiyabutr N. Nephrotoxicity in snake envenomation. J Nat Toxins. 1999;8:271–7.

    CAS  PubMed  Google Scholar 

  44. Wang Y-M, Lu P-J, Ho C-L, Tsai I-H. Characterization and molecular cloning of neurotoxic phospholipases A2 from Taiwan viper (Vipera russelli formosensis). Eur J Biochem. 1991;209:635–41.

    Article  Google Scholar 

  45. Liao WB, Lee CW, Tsai YS, Liu BM, Chung KJ. Influential factors affecting prognosis of snakebite patients management: Kaohsiung Chang Gung memorial experience. Changgeng Yi Xue Za Shi. 2000;23:577–83.

    CAS  Google Scholar 

  46. Kanjanajatanee J, Visutipant S. Russell’s viper bite: clinical manifestations and treatment. Thai Med Council Bull. 1987;13:25–38.

    Google Scholar 

  47. Eapen CK, Chandy N, Joseph JK. A study of 1000 cases of snake envenomation. Presented at XI International Congress of Tropical Medicine & Malaria, Calgary. 1984.

    Google Scholar 

  48. Uma B, Veerabasappa T. Molecular mechanisms of lung hemorrhage induction by VRV-PL-VIIIa from Russell’s viper (Vipera russelli) venom. Toxicon. 2000;38:1129–47.

    Article  CAS  PubMed  Google Scholar 

  49. Ariaratnam CA, Meyer WP, Perera G, Eddleston M, Kuleratne SA, Attapattu W, et al. A new monospecific ovine Fab antivenom for treatment of envenoming by the Sri Lankan Russell’s viper Daboia russelii russelii: a preliminary dose-finding and pharmacokinetic study. Am J Trop Med Hyg. 1999;6:259–65.

    Google Scholar 

  50. Bhat RN. Viperine snake bite poisoning in Jammu. J Indian Med Assoc. 1974;63:383–92.

    CAS  PubMed  Google Scholar 

  51. Warrell DA, Arnett C. The importance of bites by the saw-scaled or carpet viper (Echis carinatus): epidemiological studies in Nigeria and a review of the world literature. Acta Trop. 1976;33(4):307–41.

    CAS  PubMed  Google Scholar 

  52. Weiss JR, Whatley RE, Glenn JL, Rodgers GM. Prolonged hypofibrinogenemia and protein C activation after envenoming by Echis carinatus socchureki. Am J Trop Med Hyg. 1991;44(4):452–60.

    Google Scholar 

  53. Viravan C, Looareesuwan S, Kosakarn W, Wuthiekanun V, McCarthy CJ, Stimson AF, et al. A national hospital-based survey of snakes responsible for bites in Thailand. Trans R Soc Trop Med Hyg. 1992;86:100–6.

    Article  CAS  PubMed  Google Scholar 

  54. Warrell DA, Looareesuwan S, Theakston RD, Phillips RE, Chanthavanich P, Viravan C, et al. Randomized comparative trial of three monospecific antivenoms for bites by the Malayan pit viper (Calloselasma rhodostoma) in southern Thailand: clinical and laboratory correlations. Am J Trop Med Hyg. 1986;35:1235–47.

    CAS  PubMed  Google Scholar 

  55. Hatton MWC. Studies on the coagulant enzyme from Agkistrodon rhodostoma venom. Isolation and some properties of the enzyme. Biochem J. 1973;131(4):799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lollar P, Parker CG, Kajenski PJ, Litwiller RD, Fass DN. Degradation of coagulation proteins by an enzyme from Malayan pit viper (Agkistrodon rhodostoma) venom. Biochemistry. 1987;26(24):7627–36.

    Article  CAS  PubMed  Google Scholar 

  57. Huang TF, Chang JH, Oyang C. Characterization of hemorrhagic principles from Trimeresurus gramineus venom. Toxicon. 1984;22:45–52.

    Article  CAS  PubMed  Google Scholar 

  58. Kawamura Y, Sawai Y, Jiang K. Comparative potency of antivenoms against Japanese and Chinese mamushi venoms. Snake. 1985;17:82–3.

    Google Scholar 

  59. Sawai Y, Kawamura Y, Yoriba M, et al. An epidemiologic study of snakebites in Guangxi Zhuang autonomous region, China in 1990. Snake. 1992;24:1–15.

    Google Scholar 

  60. Nikai T, Niikawa M, Komori Y, Sekoguchi S, Sugihara H. Proof of proteolytic activity of hemorrhagic toxins, HR-2a and HR-2b, from Trimeresurus flavoviridis venom. Int J Biochem. 1987;19(3):221–6.

    Article  CAS  PubMed  Google Scholar 

  61. Nikai T, Mori N, Kishida M, Kato Y, Takenaka C, Murakami T, et al. Isolation and characterization of hemorrhagic factors a and b from the venom of the Chinese habu snake (Trimeresurus mucrosquamatus). Biochim Biophys Acta. 1985;838(1):122–31.

    Article  CAS  PubMed  Google Scholar 

  62. Kishida M, Nikai T, Mori N, Kohmura S, Sugihara H. Characterization of mucrotoxin a from the venom of Trimeresurus mucrosquamatus (the Chinese habu snake). Toxicon. 1985;23(4):637–45.

    Article  CAS  PubMed  Google Scholar 

  63. Tu AT. Local tissue damaging (hemorrhage and myonecrosis) toxins from rattlesnake and other pit viper venoms. J Toxicol Toxin Rev. 1983;2:205–34.

    Article  CAS  Google Scholar 

  64. Mebs D, Samejima Y. Isolation and characterization of myotoxic phospholipase A2 from crotalid venoms. Toxicon. 1986;24:161–8.

    Article  CAS  PubMed  Google Scholar 

  65. Oyama E, Hidenobu T. Purification and characterization of thrombin-like enzyme, elegaxobin, from the venom of Trimeresurus elegans (Sakishima-habu). Toxicon. 2000;38:1087–100.

    Article  CAS  PubMed  Google Scholar 

  66. Nikai T, Kato S, Komori H. Amino acid sequence and biological properties of the lectin from the venom of Trimeresurus okinavensis (Himehabu). Toxicon. 2000;38:707–11.

    Article  CAS  PubMed  Google Scholar 

  67. Hutton RA, Looareesuwan S, Ho M, Chanthavanich P, Karbwang J, Supanaranond W, et al. Arboreal green pit vipers (genus Trimeresurus) of southeast Asia: Bites by T. albolabris and T. macropis in Thailand and a review of the literature. Trans R Soc Trop Med Hyg. 1990;84(6):866–74.

    Article  CAS  PubMed  Google Scholar 

  68. Faiz A, Ghose A, Ahsan F, Rahman R, Amin R, Hassan MU, et al. The greater black krait (Bungarus niger), a newly recognized cause of neuro-myotoxic snake bite envenoming in Bangladesh. Brain. 2010;133(11):3181–93.

    Article  PubMed  Google Scholar 

  69. Dixon RW, Harris JB. Nerve terminal damage by b-bungarotoxin: its clinical significance. Am J Pathol. 1999;154:447–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Prasarnpun S, Walsh J, Awad SS, Harris JB. Envenoming bites by kraits: the biological basis of treatment-resistant neuromuscular paralysis. Brain. 2005;128:2987–96.

    Article  CAS  PubMed  Google Scholar 

  71. Harris JB, Goonetilleke A. Animal poisons and the nervous system: what the neurologist needs to know. J Neurol Neurosurg Psychiatry. 2004;75 Suppl 3:40–6.

    Google Scholar 

  72. Cull-Candy SG, Fohlman J, Gustavsson D, Lu¨llmann-Rauch R, Thesleff S. The effects of taipoxin and notexin on the function and fine structure of the murine neuromuscular junction. Neuroscience. 1976;1:175–80.

    Article  CAS  PubMed  Google Scholar 

  73. Aird SD. Ophidian envenomation strategies and the role of purines. Toxicon. 2002;40:335–93.

    Article  CAS  PubMed  Google Scholar 

  74. Hodgson WC, Wickramaratna JC. In vitro neuromuscular activity of snake venoms. Clin Exp Pharmacol Physiol. 2002;29:807–14.

    Article  CAS  PubMed  Google Scholar 

  75. Lewis RL, Gutmann L. Snake venoms and the neuromuscular junction. Sem Neurol. 2004;24:175–9.

    Article  Google Scholar 

  76. Su MJ, Chaw CC. Presynaptic effects of snake venom toxins which have phospholipase A2 activity (beta-bungarotoxin, taipoxin, crotoxin). Toxicon. 1984;22:631–40.

    Article  CAS  PubMed  Google Scholar 

  77. Doley R, Kini RM. Protein complexes in snake venom. Cell Mol Life Sci. 2009;66:2851–71.

    Article  CAS  PubMed  Google Scholar 

  78. Prasarnpun S, Walsh J, Harris JB. Beta-bungarotoxin-induced depletion of synaptic vesicles at the mammalian neuromuscular junction. Neuropharmacology. 2004;47:304–14.

    Article  CAS  PubMed  Google Scholar 

  79. Ranawaka UK, Lalloo DG, de Silva HJ. Neurotoxicity in snakebite – the limits of our knowledge. PLoS Negl Trop Dis. 2013;7(10):e2302. doi:10.1371/journal.pntd.0002302.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Pochanugool C, Limthongkul S, Meemano K. Clinical features of 37 non-antivenin treated neurotoxic snakebite patients. In: Gopalakrishnakone P, Tan CK, editors. Progress in venom and toxin research. Singapore: National University; 1987. p. 46–57.

    Google Scholar 

  81. Bowman WC. Neuromuscular block. Br J Pharmacol. 2006;147 Suppl 1:277–86.

    Google Scholar 

  82. Kularatne SA, Budagoda BD, Gawarammana IB, Kularatne WK. Epidemiology, clinical profile and management issues of cobra (Naja naja) bites in Sri Lanka: first authenticated case series. Trans R Soc Trop Med Hyg. 2009;103(9):924–30.

    Article  CAS  PubMed  Google Scholar 

  83. Trevett AJ, Lalloo DG, Nwokolo NC, Naraqi S, Kevau IH, Theakston RDG, et al. Failure of 3,4-diaminopyridine and edrophonium to produce significant clinical benefit in neuro- toxicity following the bite of Papuan taipan (Oxyuranus scutellatus canni). Trans R Soc Trop Med Hyg. 1995;89(4):444–6.

    Article  CAS  PubMed  Google Scholar 

  84. Warrell DA, Looareesuwan S, White NJ, Theakston RDG, Warrell MJ, Kosakarn W, et al. Severe neurotoxic envenoming by the Malayan krait Bungarus candidus (Linnaeus): response to antivenom and anticholinesterase. Brit Med J. 1983;286(6366):678–80.

    Article  CAS  Google Scholar 

  85. Watt G, Meade BD, Theakston RD, Padre LP, Tuazon ML, Calubaquib C, et al. Comparison of Tensilon and antivenom for the treatment of cobra-bite paralysis. Trans R Soc Trop Med Hyg. 1989;83(4):570–3.

    Article  CAS  PubMed  Google Scholar 

  86. Watt G, Theakston RDG, Hayes CG, Yambao ML, Sangalang R, Ranoa CP, et al. Positive response to edrophonium in patients with neurotoxic envenoming by cobras (Naja naja philippinensis). N Engl J Med. 1986;315:1444–8.

    Article  CAS  PubMed  Google Scholar 

  87. Campbell CH. Symptomatology, pathology and treatment of the bites of elapid snakes. In: Lee CY, editor. Snake venoms. Handbook of experimental pharmacology. Berlin: Springer; 1979. p. 898–921.

    Chapter  Google Scholar 

  88. Theakston RDG, Phillips RE, Warrell DA, Galagedera Y, Abeysekera DT, Dissanayaka P, et al. Envenoming by the common krait (Bungarus caeruleus) and Sri Lankan cobra (Naja naja naja): efficacy and complications of therapy with Haffkine antivenom. Trans R Soc Trop Med Hyg. 1990;84(2):301–8.

    Article  CAS  PubMed  Google Scholar 

  89. Reid HA. Cobra bites. Br Med J. 1964;2(5408):540–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hogue-Angeletti RA, Bradshaw RA. Nerve growth factors in snake venoms. In: Lee CY, editor. Snake venoms. Berlin: Springer; 1979. p. 276–94.

    Chapter  Google Scholar 

  91. Vogt W. Snake venom constituents affecting the complement system. In: Stocker K, editor. Medical use of snake venom proteins. Boca Raton: CRC Press; 1990. p. 79–96.

    Google Scholar 

  92. Vogel CW. Cobra venom factor: the complement-activating protein of cobra venom. In: Tu AT, editor. Handbook of natural toxins, vol. 5. New York: Marcel Dekker; 1991. p. 147.

    Google Scholar 

  93. Teng CM, Jy W, Ouyang G. Cardiotoxin from Naja naja atra venom: a potentiator of platelet aggregation. Toxicon. 1984;22:463–70.

    Article  CAS  PubMed  Google Scholar 

  94. Sawai Y, Honma M, Huja ML, Singh G. Snake bites in India. Indian J Med Res. 1954;42:661–86.

    Google Scholar 

  95. Trishnananda M, Oonsombat P, Dumavibhat B, Yongchaiyudha S, Boonyapisit V. Clinical manifestations of cobra bite in the Thai farmer. Am J Trop Med Hyg. 1979;28(1):165–6.

    CAS  PubMed  Google Scholar 

  96. Mitrakul C, Dhamkrong AT, Futrakulp P, Thisyakorn C, Vongsrisart K, Varavithya C, et al. Clinical features of neurotoxic snakebite and response to antivenom in 47 children. Am J Trop Med Hyg. 1984;33(6):1258–66.

    CAS  PubMed  Google Scholar 

  97. Warrell DA, Ormerond LD. Snake venom ophthalmia and blindness caused by the spitting cobra (Naja nigricollis) in Nigeria. Am J Trop Med Hyg. 1976;25:525–9.

    CAS  PubMed  Google Scholar 

  98. Welch KRG. Snakes of the orient: a checklist. Malabar: Robert E. Krieger Publishing; 1988.

    Google Scholar 

  99. Gomes A, Palabi D, Dasgupta SC. Occurrence of a unique protein toxin from the Indian king cobra (Ophiophagus hannah) venom. Toxicon. 2001;39:363–70.

    Article  CAS  PubMed  Google Scholar 

  100. Tin-Myint, Rai-Mra, Maung-Chit, Tun-Pe, Warrell DA. Bites by the king cobra (Ophiophagus hannah) in Myanmar: successful treatment of severe neurotoxic envenoming. Q J Med. 1991;80(293):751–62.

    CAS  PubMed  Google Scholar 

  101. De Silva A. Snakebites in Anuradhapura District. Snake. 1981;13:117–30.

    Google Scholar 

  102. Ahuja ML, Singh G. Snake bite in India. Indian J Med Res. 1954;42:661–8.

    CAS  PubMed  Google Scholar 

  103. Kuo TP, Wu CS. Clinicopathological studies on snake bites in Taiwan. Snake. 1972;4:1–22.

    Google Scholar 

  104. Buranasin P. Snakebites at Maharat Nakhon Ratchasima Regional Hospital. Southeast Asian J Trop Med Public Health. 1993;24:186–92.

    CAS  PubMed  Google Scholar 

  105. Reid HA. Symptomatology, pathology and treatment of the bites of sea snakes. In: Lee CY, editor. Snake venoms. Handbook of experimental pharmacology. Berlin: Springer; 1979. p. 922–55.

    Chapter  Google Scholar 

  106. Warrell DA. Sea snake bites in the Asia-Pacific region. In: Gopalkrishnakone P, editor. Sea snake toxinology. Singapore: University Press; 1994. p. 1–36.

    Google Scholar 

  107. Reid HA. Epidemiology of sea snake bites. J Trop Med Hyg. 1975;78:106–13.

    CAS  PubMed  Google Scholar 

  108. Phillips CM. Sea snake envenomation. Dermatol Ther. 2002;15(1):58–61. doi:10.1046/j.1529-8019.2002.01504.x.

    Article  Google Scholar 

  109. Hill RE, Mackessy SP. Characterization of venom (Duvernoy’s secretion) from twelve species of colubrid snakes and partial sequence of four venom proteins. Toxicon. 2000;38:1663–87.

    Article  CAS  PubMed  Google Scholar 

  110. Mittleman MB, Goris RC. Death caused by the bite of the Japanese Colubrid snake Rhabdophis tigrinus (Boie) (Reptilia, Serpentes, Colubridae). J Herpetol. 1978;12:109–11.

    Article  Google Scholar 

  111. Ogawa H, Sawai Y. Fatal bite of the yamakagashi (Rhabdophis tigrinus). Snake. 1986;18:53–4.

    Google Scholar 

  112. Smeets REH, Melman PG, Foffmann JJML, Mulder AW. Case report: severe coagulopathy after a bite from a “harmless” snake (Rhabdophis subminiatus). J Intern Med. 1991;230:351–4.

    Article  CAS  PubMed  Google Scholar 

  113. De Silva A, Aloysius DJ. Moderately and mildly venomous snakes of Sri Lanka. Ceylon Med J. 1983;28:118–27.

    PubMed  Google Scholar 

  114. Fernando WK, Kularatne SA, Wathudura SP, de Silva A, Mori A, Mahaulpatha D. First reported case of systemic envenoming by the Sri Lankan keelback (Balanophis ceylonensis). Toxicon. 2015;93:20–3.

    Article  CAS  PubMed  Google Scholar 

  115. Weinstein SA, Griffin R, Ismail AK. Non-front-fanged colubroid (“colubrid”) snakebites: three cases of local envenoming by the mangrove or ringed cat-eyed snake (Boiga dendrophila; Colubridae, Colubrinae), the Western beaked snake (Rhamphiophis oxyrhynchus; Lamprophiidae, Psammophinae) and the rain forest cat-eyed snake (Leptodeira frenata; Dipsadidae). Clin Toxicol (Phila). 2014;52(4):277–82.

    Article  CAS  Google Scholar 

  116. Guidelines for the management of snake-bites, 2nd edition. New Delhi: WHO, Regional Office for South-East Asia; 2016.

    Google Scholar 

  117. Sharma SK, Bovier P, Jha N, Alirol E, Loutan L, Chappuis F. Effectiveness of rapid transport of victims and community health education on snake bite fatalities in rural Nepal. Am J Trop Med Hyg. 2013;89(1):145–50.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hardy DL. A review of first aid measures for pit viper bite in North America with an appraisal of extractor suction and stun gun electroshock. In: Campbell JA, Brodie ED, editors. Biology of the pit vipers. Tyler: Selva; 1992. p. 405–14.

    Google Scholar 

  119. Warrell DA. Snake bite. Lancet. 2010;375:77–88.

    Article  PubMed  Google Scholar 

  120. Warrell DA. Treatment of snake bite in the Asia-Pacific region: a personal view. In: Gopalakrishnakone P, Chou LM, editors. Snakes of medical importance (Asia-Pacific region). Singapore: National University; 1990. p. 641–70.

    Google Scholar 

  121. Warrell DA. The global problem of snake bite: its prevention and treatment. In: Gopalakrishnakone P, Tan CK, editors. Recent advances in toxinology research, vol. 1. Singapore: National University; 1992. p. 121–53.

    Google Scholar 

  122. Tun-Pe, Aye-Aye-Myint, Khin-Aye-Han, et al. Local compression pads as a first-aid measure for victims of bites by Russell’s viper (Daboia russelii siamensis) in Myanmar. Trans R Soc Trop Med Hyg. 1995;89:293–5.

    Article  CAS  PubMed  Google Scholar 

  123. Watt G, Padre L, Tuazon ML, et al. Tourniquet application after cobra bite: delay in the onset of neurotoxicity and the dangers of sudden release. Am J Trop Med Hyg. 1988;38(3):618–22.

    CAS  PubMed  Google Scholar 

  124. Neirmain HS, Herman ML. Toxic effects of colloids in the intensive care unit. Crit Care Clin. 1991;7:713–23.

    Google Scholar 

  125. Vassar MJ, Fischer RP, O’Brian PE, et al. A multi-center trial for resuscitation of injured patients with 7.5 % sodium chloride. Arch Surg. 1993;128:1003–13.

    Article  CAS  PubMed  Google Scholar 

  126. Tilbury CR. Observations on the bite of the Mozambique spitting cobra (Naja mossambica mossambica). S Afr Med J. 1982;69:308–13.

    Google Scholar 

  127. O’Leary MA, et al. An examination of the activity of expired and mistreated commercial Australian antivenoms. Trans R Soc Trop Med Hyg. 2009;103(9):937–42.

    Article  PubMed  Google Scholar 

  128. Ho M, et al. Clinical significance of venom antigen levels in patients envenomed by the Malayan pit viper (Calloselasma rhodostoma). Am J Trop Med Hyg. 1986;34:579–87.

    Google Scholar 

  129. Ho M, et al. Pharmacokinetics of three commercial antivenoms in patients envenomed by the Malayan pit viper (Calloselasma rhodostoma) in Thailand. Am J Trop Med Hyg. 1990;42:260–6.

    CAS  PubMed  Google Scholar 

  130. Rivière G, et al. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: toward an optimization of antivenom therapy. J Pharmacol Exp Ther. 1997;281:1–8.

    PubMed  Google Scholar 

  131. Banerji RN, Sahni AL, Chacko KA. Neostigmine in the treatment of Elapidae bites. J Assoc Physicins India. 1972;20:503–9.

    Google Scholar 

  132. de Silva HA, Pathmeswaran A, Ranasinha CD, Jayamanne S, Samarakoon SB, Hittharage A, Kalupahana R, Ratnatilaka GA, Uluwatthage W, Aronson JK, Armitage JM, Lalloo DG, de Silva HJ. Low-dose adrenaline, promethazine, and hydrocortisone in the prevention of acute adverse reactions to antivenom following snakebite: a randomised, double-blind, placebo-controlled trial. PLoS Med. 2011;8(5):e1000435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Upadhyaya AC, Murhty GL, Sahay RK, et al. Snakebite presenting as acute myocardial infarction, ischaemic cerebral vascular accident, acute renal failure and disseminated intravascular coagulopathy. J Assoc Physicians India. 2000;48:1109–10.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to acknowledge Michael V. Callahan, Charles Lee, and Richard Y Wang, who were the authors of the last edition. A Ghose would like to acknowledge and thank Professor David A Warrell and Professor Md Abul Faiz for being a teacher, guide and mentor. The text is heavily influenced by publications and lectures of Prof D A Warrell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Ghose .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies, and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Ghose, A., White, J. (2016). Asian Snakes. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_95-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_95-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics