Skip to main content

Hydantoins: Phenytoin and Fosphenytoin

  • Living reference work entry
  • First Online:
Critical Care Toxicology
  • 446 Accesses

Abstract

Greater than two million Americans suffer from epilepsy, and 10 % of the population has at least one convulsion in their lifetime. Phenytoin has been commercially available in the United States since 1938 and had been a first-step anticonvulsant for all types of epilepsy, with the exception of absence seizures. In conjunction with benzodiazepines, phenytoin is efficacious in the acute treatment of status epilepticus [1] and has been used prophylactically after head injury [2]. Phenytoin was used as a class 1B antidysrhythmic agent, particularly in the setting of digoxin toxicity, but it no longer is considered a first-line agent for that indication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Working group on status epilepticus: treatment of convulsive status. JAMA. 1993;270:854–59.

    Google Scholar 

  2. Brain Trauma Foundation: Role of antiseizure prophylaxis following head injury. J Neurotrauma. 2000;17:549–53.

    Google Scholar 

  3. Larsen JR, Larsen LS. Clinical features and management of poisoning due to phenytoin. Med Toxicol Adverse Drug Exp. 1989;4:229–45.

    Article  CAS  PubMed  Google Scholar 

  4. Golightly LK, Smolinske SS, Bennett ML, et al. Pharmaceutical excipients: adverse effects associated with inactive ingredients in drug products (Part 1). Med Toxicol Adverse Drug Exp. 1988;3:128–65.

    CAS  PubMed  Google Scholar 

  5. Mowry JB, Spyker Brooks DA, Brooks BE, et al. 2014 annual report of the American Association of Poison Control Centers’ National Poison Data Systems (NPDS): 32st annual report. Clin Toxicol. 2015;53(10):962–1146.

    Article  CAS  Google Scholar 

  6. Mowry JB, Spyker DA, Cantilena LR, et al. 2013 annual report of the American Association of Poison Control Centers’ National Poison Data Systems (NPDS): 31st annual report. Clin Toxicol. 2014;52:1032–283.

    Article  Google Scholar 

  7. Barre J, Didey F, Delion F, Tillement JP. Problems in therapeutic drug monitoring: free drug level monitoring. Ther Drug Monit. 1988;10:133–43.

    Article  CAS  PubMed  Google Scholar 

  8. Bachmann KA, Belloto Jr RJ. Differential kinetics of phenytoin in elderly patients. Drugs Aging. 1999;15:235–50.

    Article  CAS  PubMed  Google Scholar 

  9. Cuttle L, Munns AJ, Hogg NA, et al. Phenytoin metabolism by human cytochrome P450: involvement of P450 3A and 2C forms in secondary metabolism and drug-protein adduct formation. Drug Metab Dispos. 2000;28:945–50.

    CAS  PubMed  Google Scholar 

  10. Stringer JL. Drugs for seizure disorders [epilepsies]. In: Brody TM, Larner J, Minneman KP, editors. Human pharmacology: molecular to clinical. 3rd ed. St. Louis: Mosby; 1998. p. 376.

    Google Scholar 

  11. Pisciotta M, Prestipino G. Anticonvulsant phenytoin affects voltage-gated potassium currents in cerebellar granule cells. Brain Res. 2002;941(1–2):53–61.

    Article  CAS  PubMed  Google Scholar 

  12. Ragsdale DS, Scheuer T, Catterall WA. Frequency and voltage-dependent inhibition of type IIA Na+ channels, expressed in a mammalian cell line, by local anesthetic, antiarrhythmic, and anticonvulsant drugs. Mol Pharmacol. 1991;40:756–65.

    CAS  PubMed  Google Scholar 

  13. Eldridge FL, Paydarfar D, Scott SC, et al. Role of endogenous adenosine in recurrent generalized seizures. Exp Neurol. 1989;103:179–85.

    Article  CAS  PubMed  Google Scholar 

  14. Weir RL, Padgett W, Daly JW, Anderson SM. Interaction of anticonvulsant drugs with adenosine receptors in the central nervous system. Epilepsia. 1984;25:492–8.

    Article  CAS  PubMed  Google Scholar 

  15. Osorio I, Burnstine TH, Remler B, et al. Phenytoin-induced seizures: a paradoxical effect at toxic concentrations in epileptic patients. Epilepsia. 1989;30:230–4.

    Article  CAS  PubMed  Google Scholar 

  16. Gross DR, Kitzman JV, Adams HR. Cardiovascular effects of intravenous administration of propylene glycol in calves. Am J Vet Res. 1979;40:783.

    CAS  PubMed  Google Scholar 

  17. American Academy of Pediatrics Committee on Drugs: “Inactive” ingredients in pharmaceutical products: update (subject review). Pediatrics. 1997;99:268–78.

    Google Scholar 

  18. Louis S, Kutt H. The cardiocirculatory changes caused by intravenous Dilantin and its solvent. Am Heart J. 1967;74:523.

    Article  CAS  PubMed  Google Scholar 

  19. DeToledo JC, Ramsay RE. Fosphenytoin and phenytoin in patients with status epilepticus: improved tolerability versus increased cost. Drug Saf. 2000;22:459–66.

    Article  CAS  PubMed  Google Scholar 

  20. Dean JC, Smith KR. Safety, tolerance, and pharmacokinetics of intramuscular fosphenytoin in neurosurgery patients. Epilepsia. 1993;34 Suppl 6:111.

    Google Scholar 

  21. Earnest MP, Mark JA, Drury LR. Complications of intravenous phenytoin for acute treatment of seizures. JAMA. 1983;249:762.

    Article  CAS  PubMed  Google Scholar 

  22. Wyte CD, Berk WA. Severe oral phenytoin overdose does not cause cardiovascular morbidity. Ann Emerg Med. 1991;20:508.

    Article  CAS  PubMed  Google Scholar 

  23. Wheless JW. Pediatric use of intravenous and intramuscular phenytoin: lessons learned. J Child Neurol. 1998;13 Suppl 1:S11–4.

    Article  PubMed  Google Scholar 

  24. Mellick LB, Morgan JA, Mellick GA. Presentations of acute phenytoin overdose. Am J Emerg Med. 1989;7:61.

    Article  CAS  PubMed  Google Scholar 

  25. Curtis DL, Piibe R, Ellenhorn MJ, et al. Phenytoin toxicity: a review of 94 cases. Vet Hum Toxicol. 1989;31:164–5.

    CAS  PubMed  Google Scholar 

  26. Berry DJ, Wiseman HM, Volans GN. A survey of non-barbiturate anticonvulsant drug overdose. Hum Toxicol. 1983;2:357.

    Article  PubMed  Google Scholar 

  27. Privitera M, Welty TE. Acute phenytoin toxicity followed by seizure breakthrough from a ticlopidine-phenytoin interaction. Arch Neurol. 1996;53:1191–2.

    Article  CAS  PubMed  Google Scholar 

  28. Moss W, Ojukwu C, Chiriboga CA. Phenytoin-induced movement disorder: unilateral presentation in a child and response to diphenhydramine. Clin Pediatr (Phila). 1994;33:634–8.

    Article  CAS  Google Scholar 

  29. Corey A, Koller W. Phenytoin-induced dystonia. Ann Neurol. 1983;14:92–3.

    Article  CAS  PubMed  Google Scholar 

  30. Krupp E, Loscher W. Anticonvulsant drug effects in the direct cortical ramp-stimulation model in rats: comparison with conventional seizure models. J Pharmacol Exp Ther. 1998;285:1137–49.

    CAS  PubMed  Google Scholar 

  31. Stark RJ. Spasticity due to phenytoin toxicity. Med J Aust. 1979;1:156.

    CAS  PubMed  Google Scholar 

  32. Morkunas AR, Miller MB. Anticonvulsant hypersensitivity syndrome. Crit Care Clin. 1997;13:727–39.

    Article  CAS  PubMed  Google Scholar 

  33. Osorio I, Burnstein TH, Pemler B. Phenytoin induced seizures: a paradoxical effect at toxic concentrations in phenytoin patients. Epilepsia. 1989;30:230.

    Article  CAS  PubMed  Google Scholar 

  34. Luef G. Magnetic resonance volumetry of the cerebellum in epileptic patients after phenytoin overdoses. Eur Neurol. 1996;36:273–7.

    Article  CAS  PubMed  Google Scholar 

  35. Chua HC, Venketasubramanian N, Tan CB, et al. Paradoxical seizures in phenytoin toxicity. Singapore Med J. 1999;40:276–7.

    CAS  PubMed  Google Scholar 

  36. Evens RP, Fraser DG, Ludden TM, et al. Phenytoin toxicity and blood levels after a large oral dose. Am J Hosp Pharm. 1980;37:232–5.

    CAS  PubMed  Google Scholar 

  37. Asconape JJ. Some common issues in the use of antiepileptic drugs. Semin Neurol. 2002;22:27–39.

    Article  PubMed  Google Scholar 

  38. Hanna DR. Purple glove syndrome: a complication of intravenous phenytoin. J Neurosci Nurs. 1992;24:340.

    Article  CAS  PubMed  Google Scholar 

  39. De Diego JI, Prim MP, Marcos S, et al. Vestibular and hearing manifestations of phenytoin toxicity: a retrospective series. Ear Nose Throat J. 2001;80:404–9.

    PubMed  Google Scholar 

  40. Meraw SJ, Sheridan PJ. Medically induced gingival hyperplasia. Mayo Clin Proc. 1998;73:1196–9.

    Article  CAS  PubMed  Google Scholar 

  41. Jack L, Cunningham C, Watson ID, et al. Micro-scale ultracentrifugation as an alternative to ultrafiltration for the determination of the unbound fraction of phenytoin in human serum. Ann Clin Biochem. 1986;23(Pt 5):603–7.

    Article  CAS  PubMed  Google Scholar 

  42. Howard CE, Roberts S, Ely DS. Use of multiple-dose activated charcoal in phenytoin toxicity. Ann Pharmacother. 1994;28:201.

    CAS  PubMed  Google Scholar 

  43. Rowden AM, Spoor JE, Bertino JS. The effect of activated charcoal on phenytoin pharmacokinetics. Ann Emerg Med. 1990;19:1144–7.

    Article  CAS  PubMed  Google Scholar 

  44. Position statement and practice guidelines on the use of multi-dose activated charcoal in the treatment of acute poisoning. American Academy of Clinical Toxicology; European Association of Poisons Centres and Clinical Toxicologists. J Toxicol Clin Toxicol. 1999;37:731–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank LoVecchio .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

LoVecchio, F. (2016). Hydantoins: Phenytoin and Fosphenytoin. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_24-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_24-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics