Skip to main content

Marine Vertebrates, Cnidarians and Mollusks

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Critical Care Toxicology

Abstract

Jellyfish belong to the phylum Cnidaria (Greek derived from ‘nettle’) and are mostly free-swimming marine animals that may have an umbrella-shaped bell with varying length tentacles. The pulsations of the bell are relied on as their mode of locomotion, while the tentacles are typically used for capturing prey. Jellyfish have a worldwide distribution, occupying every ocean and some freshwater lakes. The phylum is comprised of several distinct life forms and four important classes of jellyfish: Cubozoa, Hydroza, Anthozoa, and Scyphozoa. The defining feature of Cnidaria is the cnidocyte, and the tentacles of most jellyfish are lined with thousands of them (Figs. 1 and 2). Each cnidocyte contains a harpoon-like organelle known as a cnida or cnidocyst. On the external surface of the cnidocyte is a cnidocil which, when activated by pressure, osmotic, or chemical changes, acts like a trigger, releasing the previously coiled harpoon. Once forcefully expelled, a process that takes microseconds, the harpoon is capable of penetrating human tissue. Venom is forced out of the cnidocyte under pressure through the epidermis and upper dermis and, particularly if dermal capillaries are inoculated directly, can enter the systemic circulation. It is sometimes stated that these may be inadvertently accelerated by the rubbing or shaking of a startled human victim, but there is no reliable evidence that this actually occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. National Oceanic and Atmospheric Administration. www.noaa.gov/facts/box-jellyfish

  2. Tibbalis J, Li R, Tibbalis HA, Gershwin L, Winkei KD. Australian carybdeid jellyfish causing the “Irukandji syndrome”. Toxicon. 2012;59(6):617–25.

    Article  CAS  Google Scholar 

  3. Barnes JH. Cause and effect in Irukandji Stingings. Med J Aust. 1964;1:897–904.

    CAS  PubMed  Google Scholar 

  4. Hughes RJA, Angus JA, Winkel KD, Wright CE. A pharmacological investigation of the venom extract of the Australian box jellyfish, Chironex fleckeri, in cardiac and vascular tissues. Toxicol Lett. 2012;209:11–20.

    Article  CAS  PubMed  Google Scholar 

  5. Tiballis J, Williams D, Sutherland SK. The effects of antivenom and verapamil on the heamodynamic actions of Chironex fleckeri (box jellyfish) venom. Anaesth Intensive Care. 1998;26:40–5.

    Google Scholar 

  6. Brinkman D, Burnell J. Identification, cloning and sequencing of two major venom proteins from the box jellyfish, Chironex fleckeri. Toxicon. 2007;50(6):850–60.

    Article  CAS  PubMed  Google Scholar 

  7. Cuypers E, Yanagihara A, Karlsson E, Tytgat J. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels. FEBS Lett. 2006;183:631–6.

    Google Scholar 

  8. Endean R. Separation of two myotoxins from nematocysts of the box jellyfish (Chironex fleckeri). Toxicon. 1987;25(5):483–92.

    Article  CAS  PubMed  Google Scholar 

  9. Winkel KD, Tibbals J, Molenaar P, Lambert G, Coles P, Ross-Smith M, Wiltshire C, Fenner PJ, Gershwin L, Hawdon GM, Wright CE, Angus JA. Cardiovascular actions of the venom from the Irukandji (Carukia barnesi) jellyfish: effects in human, rat, and Guinea-pig tissues in vitro and in pigs in vivo. Clin Exp Pharmacol Physiol. 2005;32:777–88.

    Article  CAS  PubMed  Google Scholar 

  10. Sakanashi M, Matsuzaki T, Nakasone J, Koyama T, Sakanashi M, Kukita I, Sakanashi M. Effects of diltiazem on in vitro cardiovascular actions of crude venom obtained from Okinawan box-jellyfish (Habu-kurage), Chiropsalmus quadrigatus. Anaesth Intens Care. 2002;30:570–7.

    CAS  Google Scholar 

  11. Koyama T, Noguchi K, Matsuzaki T, Sakanashi M, Nakasone J, Miyagi K, Sakanashi M, Sakanashi M. Haemodynamic effects of the crude venom from nematocysts of the box-jellyfish Chiropsalmus quadrigatus (Habu-kurage) in anaesthetized rabbits. Toxicon. 2003;41:621–31.

    Article  CAS  PubMed  Google Scholar 

  12. Noguchi K, Sakanashi M, Matsuzaki T, Nakasone J, Sakanashi M, Koyama T, Hamadate N, Sakanashi M. Cardiovascular effects and lethality of venom from nematocytes of the box-jellyfish Chriopsalmus quadrigatus (Habu-kurage) in anaesthetized rats. Toxicon. 2005;45.

    Google Scholar 

  13. Tamkun MM, Hessinger DA. Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese man-of-war, Physalia physalis. BBA. 1981;667(1):87–98.

    CAS  PubMed  Google Scholar 

  14. Bhakdi S, Tranum-Jensen J. Damage to cell membranes by pore-forming bacterial cytolysins. Prog Allergy. 1988;40:1–43.

    CAS  PubMed  Google Scholar 

  15. Edwards L, Whitter E, Hessinger DA. Apparent membrane pore-formation by Portuguese Man-of-War (Physalia physalis) venom in cultured cells. Toxicon. 2002;40:1299–305.

    Article  CAS  PubMed  Google Scholar 

  16. Hastings SG, Larsen JB, Lane CE. Effects of nematocyst toxin of Physalia physalis (Portuguese Man-of-War) on the canine cardiovascular system. Exp Biol Med. 1967;125(1):41–5.

    Article  CAS  Google Scholar 

  17. Tibballs J. Australian venomous jellyfish, envenomation syndromes, toxins and therapy. Toxicon. 2006;48:830–59.

    Article  CAS  PubMed  Google Scholar 

  18. O’Reilly GM, Isbister GK, Lawrie PM, Treston GT, Currie BJ. Prospective study of jellyfish stings from tropical Australia, including the major box jellyfish Chironex fleckeri. Med J Aust. 2001;175(11–12):652–5.

    PubMed  Google Scholar 

  19. Barnes JH. Studies on three venomous cubomedusae. In: Ress WJ, editor. The Cnidaria and their evolution. New York: Academic; 1966.

    Google Scholar 

  20. Little M, Mulcahy RF. A year’s experience of Irukandji envenomation in far north Queensland. Med J Aust. 1998;169:638–41.

    CAS  PubMed  Google Scholar 

  21. Huynh TT, Seymour J, Pereira P, Mulchany R, Cullen P, Carrette T, Little M. Severity of Irukandji syndrome and nematocyst identification from skin scrappings. Med J Aust. 2003;178:38–41.

    PubMed  Google Scholar 

  22. Pereira P, Barry J, Corkeron M, Keir P, Little M, Seymour J. Intracranial hemorrhage and death after envenoming by the jellyfish Carukia barnesi. Clin Tox. 2010;48:390–2.

    Article  CAS  Google Scholar 

  23. Nakamoto M, Uezato H. Stings of box-jellyfish and sea anemones. Jpn J Clin Dermatol. 1998;52 Suppl 5:29–53.

    Google Scholar 

  24. Haddad V, Virga R, Bechara A, Da Silveira FL, Morandini C. An outbreak of Portuguese man-of-war (Physalia physalis – Linnaeus, 1758) envenoming in Southeastern Brazil. Rev Soc Bras Med Trop. 2013;46(5):641–4.

    Article  Google Scholar 

  25. Guess HA, Saviteer PL, Morris CR. Hemolysis and acute renal failure following a Portuguese man-of-war sting. Pediatrics. 1980;70:979–81.

    Google Scholar 

  26. Stein RM, Marraccini JV, Rothschild NE, Burnett JW. Fatal Portuguese Man-O’-War (Physalia physalis) envenomation. Ann Emerg Med. 1989;3:131–4.

    Google Scholar 

  27. Auerbach PS, Hays JT. Erythema nodosum following a jellyfish sting. J Emerg Med. 1987;5(6):487–91.

    Article  CAS  PubMed  Google Scholar 

  28. Czarnetzki BM, Thiele T, Rosenbach T. Evidence for leukotrienes in animal venoms. J Allergy Clin Immunol. 1990;85(2):505–9.

    Article  CAS  PubMed  Google Scholar 

  29. Burnett JW, Hepper KP, Aurelian L. Lymphokine activity in coelenterate envenomation. Toxicon. 1986;24(1):104–7.

    Article  CAS  PubMed  Google Scholar 

  30. Pereira PL, Carrette T, Cullen P. Pressure immobilization bandages in first-aid treatment of jellyfish envenomation: current recommendations reconsidered. Med J Aust. 2000;173:650–2.

    CAS  PubMed  Google Scholar 

  31. Hartwick R, Callanan V, Williamson J. Disarming the box jellyfish, nematocyst inhibition in Chironex fleckeri. Med J Aust. 1980;1:15–20.

    CAS  PubMed  Google Scholar 

  32. Turner B, Sullivan P. Disarming the bluebottle: treatment of Physalia envenomation. Med J Aust. 1980;2:394–5.

    CAS  PubMed  Google Scholar 

  33. Birsa LM, Verity PG, Lee RF. Evaluation of the effects of various chemicals on discharge of and pain caused by jellyfish nematocysts. Comp Biochem Physol C Toxicol Pharmacol. 2010;151:426–30.

    Article  CAS  Google Scholar 

  34. Ward NT, Darracq MA, Tomaszewski C, Clark RF. Evidence-based treatment of jellyfish stings in North America and Hawaii. Ann Emerg Med. 2012;60(4):399–414.

    Article  PubMed  Google Scholar 

  35. Andreosso A, Smout MJ, Seymour E. Dose and time dependence of box jellyfish antivenom. J Venomous Anim Toxins Incl Trop Dis. 2014; art no.34, 20:1–5.

    Google Scholar 

  36. Winter KL, Isbister GK, Jacoby T, Seymour JE, Hodgson WC. An in vivo comparison of the efficacy of CSL box jellyfish antivenom with antibodies raised against nematocyst derived-Chironex fleckeri venom. Toxicol Lett. 2009;187(2):94–8.

    Google Scholar 

  37. Burnett JW, Calton GJ. Response of the box-jellyfish (Chironex fleckeri) cardiotoxin to intravenous administration of verapamil. Med J Aust. 1983;2:192–4.

    CAS  PubMed  Google Scholar 

  38. Burnett JW, Othman IB, Endean R, et al. Verapamil potentiation of Chironex (box-jellyfish) antivenom. Toxicon. 1990;28:242–4.

    Article  CAS  PubMed  Google Scholar 

  39. Corkeron M, Pereira P, Makrocanis C. Early experience with magnesium administration in Irukandji syndrome. Anaesth Intens Care. 2004;32:666–9.

    CAS  Google Scholar 

  40. McCullagh N, Pereira P, Cullen P, Mulcahy R, Bonin R, Little M, Gray S, Seymour J. Randomized trial of magnesium in the treatment of Irukandji syndrome. Emerg Med Australas. 2012;24(5):560–5.

    Article  PubMed  Google Scholar 

  41. Schwartz S, Meinking T. Venomous marine animals of Florida: morphology, behavior, health hazards. J Fla Med Assoc. 1997;84:433–40.

    CAS  PubMed  Google Scholar 

  42. Auerbach PS. Wilderness medicine: management of wilderness and environmental emergencies. St. Louis: Mosby; 1995.

    Google Scholar 

  43. Wittle LW, Middlebrook RE, Lane CE. Isolation and partial purification of a toxin from Millepora alcicornis. Toxicon. 1971;9:333–6.

    Article  PubMed  Google Scholar 

  44. Middlebrook RE, Wittle LW, Scura ED, Lane CE. Isolation and purification of a toxin from Millepora dichotoma. Toxicon. 1971;9:333–6.

    Article  CAS  PubMed  Google Scholar 

  45. Iguchi A, Iwanaga S, Nagai H. Isolation and characterization of a novel protein from fire coral. Biochem Biophys Res Commun. 2008;36:107–12.

    Article  CAS  Google Scholar 

  46. Ibarra-Alvarado C, Alejandaro Garcia J, Aguilar MB, Rojas A, Falcon A, Heimer de la Cotera EP. Biochemical and pharmacological characterization of toxins obtained from the fire coral Millepora complanata. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(4):511–8.

    Article  PubMed  CAS  Google Scholar 

  47. Radwan FF, Aboul-Dahab HM. Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts. Comp Biochem Physiol C Toxicol Pharmacol. 2004;139(4):267–72.

    Article  PubMed  CAS  Google Scholar 

  48. Addy JH. Red Sea coral contact dermatitis. Int J Dermatol. 1991;30(4):27–3.

    Article  Google Scholar 

  49. Prasad GV, Vincent L, Hamilton R, Lim K. Minimal change disease in association with fire coral (Millepora species exposure). Am J Kidney Dis. 2006;47(1):e15–16.

    Article  PubMed  Google Scholar 

  50. Sagi A, Rosenber L, Ben-Meir P, Hauben DJ. The fire coral (Millepora dichotoma) as a cause of burns: a case report. Burns. 1987;13(4):325–6.

    Article  CAS  Google Scholar 

  51. Rifkin JF, Fenner PJ, Williamson JAH. First aid treatment of the sting from the hydroid Lytocarpus philippinus: the structure of, and in vitro, discharge experiments with its nematocysts. J Wilderness Med. 1993;4:252–60.

    Article  Google Scholar 

  52. Diaz JH. The evaluation, management, and prevention of stingray injuries in travelers. J Travel Med. 2008;15(2):102–9.

    Article  PubMed  Google Scholar 

  53. Liggins JB. Death due to a stingray barb piercing the heart: a New Zealand case from 1939, an unusual bathing fatality. N Z Med J. 2006;119(1241):53–5.

    Google Scholar 

  54. Fenner PJ, Williamson JA, Skinner RA. Fatal and non-fatal stingray envenomation. Med J Aust. 1989;151(11–12):621–5.

    CAS  PubMed  Google Scholar 

  55. Ikeda T. Supraventricular bigeminy following a stingray envenomation: a case report. Hawaii Med J. 1989;48:162–4.

    CAS  PubMed  Google Scholar 

  56. Haddad V, Neto DG, dePaula Neto JB, et al. Freshwater stingrays: study of epidemiologic, clinic and therapeutic aspects based on 84 envenomings in humans and some enzymatic activities of the venom. Toxicon. 2004;43(3):287–94.

    Article  CAS  PubMed  Google Scholar 

  57. Isbister GK. Venomous fish stings in tropical Northern Australia. Am J Emerg Med. 2001;19(7):561–5.

    Article  CAS  PubMed  Google Scholar 

  58. Forrester MB. Pattern of stingray injuries reported to Texas poison control centers from 1998 to 2004. Hum Exp Toxicol. 2005;24:639–42.

    Article  PubMed  Google Scholar 

  59. Clark RF, Girard RH, Rao D, et al. Stingray envenomation: a retrospective review of clinical presentation and treatment in 119 cases. J Emerg Med. 2007;33(1):33–7.

    Article  PubMed  Google Scholar 

  60. Srinivasan S, Bosco JI, Lohan R. Marine stingray injuries to the extremities: series of three cases with emphasis on imaging. J Postgrad Med. 2012;59(4):309–11.

    Article  Google Scholar 

  61. Barber GR, Swygert JS. Necrotizing fasciitis due to Photobacterium damsela in a man lashed by a stingray. New Engl J Med. 2000;342(11):824.

    Article  CAS  PubMed  Google Scholar 

  62. Campbell J, Grenon M, You CK. Psuedoaneurysm of the superficial femoral artery resulting from stingray envenomation. Ann Vasc Surg. 2003;17(2):217–20.

    Article  PubMed  Google Scholar 

  63. Cooper NK. Historical vignette: the death of an Australian army doctor on Thursday Island in 1915 after envenomation by a stone fish. J Roy Army Med Corps. 1991;137(2):104–5.

    CAS  PubMed  Google Scholar 

  64. Diaz JH. Marine Scorpaenidae envenomation in travelers: epidemiology, management, and prevention. J Travel Med. 2015;22(4):251–8.

    Article  PubMed  Google Scholar 

  65. Gomes HL, Andrich F, Mauad H, et al. Cardiovascular effects of scorpionfish (Scorpaena plumieri) venom. Toxicon. 2010;55:580–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kizer KW, McKinney HE, Auerbach PS. Scorpaenidae envenomation: a five-year poison center experience. JAMA. 1985;253:807–10.

    Article  CAS  PubMed  Google Scholar 

  67. Aldred B, Erikson T, Lipscomb J. Lionfish envenomations in an urban wilderness. Wild Environ Med. 1996;7:291–6.

    Article  CAS  Google Scholar 

  68. Trestrail JH, al Manasneh QM. Lionfish sting experiences of an inland poison center: a retrospective study of 23 cases. Vet Hum Toxicol. 1989;31:173–5.

    PubMed  Google Scholar 

  69. Garyfallou GT, Madden JF. Lionfish envenomation. Ann Emerg Med. 1996;28:456–7.

    Article  CAS  PubMed  Google Scholar 

  70. Vetrano SJ, Lebowitz JB, Marcus S. Lionfish envenomation. J Emerg Med. 2002;23(4):379–82.

    Article  PubMed  Google Scholar 

  71. Auerbach PS. Envenomation by aquatic vertebrates. In: Auerbach PS, editor. Wilderness medicine. 6th ed. Philadelphia: Elsevier-Mosby; 2011.

    Google Scholar 

  72. Currie BJ. Marine antivenoms. J Toxicol Clin Toxicol. 2003;41(3):301–8.

    Article  CAS  PubMed  Google Scholar 

  73. Church JE, Hodgson WC. Dose-dependent cardiovascular and neuromuscular effects of stonefish (Synanceja trachynis) venom. Toxicon. 2000;38(3):391–407.

    Article  CAS  PubMed  Google Scholar 

  74. Khoo HE. Bioactive proteins from Stonefish venom. Clin Exp Pharm Physio. 2002;29:802–6.

    Article  CAS  Google Scholar 

  75. Lehmann DF, Hardy JC. Stonefish envenomation. New Engl J Med. 1993;329:510–1.

    Article  CAS  PubMed  Google Scholar 

  76. Ngo SYA, Ong SHJ, Ponampalam R. Stonefish envenomation presenting to a Singapore hospital. Singapore Med J. 2009;50(5):506–9.

    CAS  PubMed  Google Scholar 

  77. Gomes HL, Menezes TN, Carnielli JBT, et al. Stonefish antivenom neutralizes the inflammatory and cardiovascular effects induced by scorpionfish (Scorpaena plumieri) venom. Toxicon. 2011;57:992–9.

    Article  CAS  PubMed  Google Scholar 

  78. Church JE, Hodgson WC. Stonefish (Synanceia spp.) antivenom neutralizes the in vitro and in vivo cardiovascular activity of soldierfish (Gymnapistes marmoratus) venom. Toxicon. 2001;39:319–24.

    Article  CAS  PubMed  Google Scholar 

  79. Patkin M, Freeman D. Bullrout stings. Med J Aust. 1969;2:14–6.

    CAS  PubMed  Google Scholar 

  80. Hahn ST, O’Connor JM. An investigation of the biologic activity of bullrout (Notesthes robusta) venom. Toxicon. 2000;38:79–89.

    Article  CAS  PubMed  Google Scholar 

  81. Church JE, Hodgson WC. Adrenergic and cholinergic activity contributes to the cardiovascular effects of lionfish (Pterois volitans) venom. Toxicon. 2002;40:787–96.

    Article  CAS  PubMed  Google Scholar 

  82. Das SK, Johnson MB, Cohly HH. Catfish stings in Mississippi. South Med J. 1995;88:809–12.

    Article  CAS  PubMed  Google Scholar 

  83. Shiomi K, et al. Toxins in the skin secretions of the oriental catfish (Plotosus lineatus): immunological properties and immunocytochemical identification of producing cells. Toxicon. 1988;26:353.

    Article  CAS  PubMed  Google Scholar 

  84. Blomkalns A. Catfish spine envenomation: a case report and literature review. Wilderness Environ Med. 1999;10(4):242–6.

    Article  CAS  PubMed  Google Scholar 

  85. Gudger EW. On the alleged penetration of the human urethra by an Amazonian catfish called candiru with a review of the allied habits of other members of the family pygidiidae: part II. Am J Surg. 1930;8:443–56.

    Article  Google Scholar 

  86. Breault JL. Candru: Amazonian parasitic catfish. J Wilderness Med. 1991;2:304–12.

    Article  Google Scholar 

  87. Bonnet MS. The toxicology of Trachinus vipera: the lesser weeverfish. Br Homeopath J. 2000;89:84–8.

    Article  CAS  PubMed  Google Scholar 

  88. Davies RS, Evans RJ. Weeverfish fish stings a report of two cases presenting to an accident and emergency department. J Accid Emerg Med. 1996;13:139–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Russell FE. Weeverfish sting in the last world. Br Med J. 1983;287:981.

    Article  CAS  Google Scholar 

  90. Deehan A, Ben-Meir P, Sagi A. A scorpion fish (Trachinus vipera) sting: fishermen’s hazard. Br J Indust Med. 1991;48:718–20.

    Google Scholar 

  91. Duran FY, Duran O. Weever fish sting: An unusual problem. J Acad Emer Med. 2014;13:42–3. Letter to the Editor.

    Article  Google Scholar 

  92. Gonzago RAF. Spontaneous abortion after weeverfish sting. Br Med J. 1985;290:518.

    Google Scholar 

  93. Briars GL. Envenomation by the lesser weeverfish. Br J Gen Pract. 1992;42(358):213.

    Google Scholar 

  94. McGoldrick J, Marx JA. Marine envenomations. Part 1. Vertebrates. J Emerg Med. 1990;9:497–502.

    Article  Google Scholar 

  95. Cain D. Weever fish sting: an unusual problem. Br Med Res. 1983;287:406–7.

    Article  CAS  Google Scholar 

  96. Halpern P, Sorkine P, Raskin Y. Envenomation by Trachinus draco in the eastern Mediterranean. Eur J Emerg Med. 2002;9:274–7.

    Article  CAS  PubMed  Google Scholar 

  97. Kayal M, Vercelloni J, Lison de Loma T, Bosserelle P, Chancerelle Y, Geoffroy S, Stievenart C, Michonneau F, Penin L, Planes S, Adjeroud M. Predator crown of thorns starfish (Acanthaster planci) outbreak, mass mortality of corals and cascading effects of reef fish and benthic communities. PLoS One. 2012;7(10):e47363.

    Google Scholar 

  98. Sato H, Tsuruta Y, Yamamoto Y, Asato Y, Taira K, Hagiwara K, Kayo S, Iwanaga S, Uezato H. Case of skin injuries due to stings by crown-of-thorns starfish (Acanthaster planci). J Dermatol. 2008;35:162–7.

    Article  PubMed  Google Scholar 

  99. Shiomi K, Yamamoto S, Yamanaka H, Kikuchi T. Purification and characterization of a lethal factor in venom from the crown-of-thorns starfish (Acanthaster planci). Toxicon. 1988;26(11):1077–83.

    Article  CAS  PubMed  Google Scholar 

  100. Lee CC, Hsieh HJ, Hsieh CH, Hwang DF. Spine venom of crown-of-thorns starfish (Acanthaster planci) induces antiproliferation and apoptosis of human melanoma cell. Toxicon. 2014;91:126–34.

    Article  CAS  PubMed  Google Scholar 

  101. Shiomi K, Yamamoto S, Yamanaka H, Kikuchi T, Konno K. Liver damage by the crown-of-thorns starfish. Toxicon. 1990;28(5):469–75.

    Article  CAS  PubMed  Google Scholar 

  102. Yamasaki Y, Ito K, Enomoto Y, Sutko JL. Alterations by saponins of passive Ca2+ permeability and Na+−Ca2+ exchange activity of canine cardiac sacrolemmal vesicles. Biochim Biophys Acta. 1987;897(3):481–7.

    Article  CAS  PubMed  Google Scholar 

  103. Ihama Y, Fukasawa M, Ninomiya K, Kawakami Y, Nagai T, Fuke C, Miyazaki T. Anaphylactic shock caused by sting of crown-of-thorns starfish (Acanthaster planci). Forensic Sci Int. 2014;236:e5–8.

    Article  PubMed  Google Scholar 

  104. Mathger LM, Bell GR, Kuzirian AM, et al. How does the blue-ringed octopus (Hapalochlaena lunulata) flash its blue rings? J Exp Biol. 2012;215:3752–7.

    Article  PubMed  Google Scholar 

  105. Yotsu-Yamashita M, Mebs D, Flachsenberger WA. Distribution of tetrodotoxin in the body of the blue-ringed octopus (Hapalochlaena maculosa). Toxicon. 2007;49:410–2.

    Article  CAS  PubMed  Google Scholar 

  106. Sutherland SK, Lane WR. Toxins and mode of envenomation of the common ringed or blue-banded octopus. Med J Aust. 1969;1:893–8.

    CAS  PubMed  Google Scholar 

  107. Edmonds C. A non-fatal case of blue-ringed octopus bite. Med J Aust. 1969;2(12):601.

    CAS  PubMed  Google Scholar 

  108. Cavazzoni E, Lister B, Sargent P, et al. Blue-ringed octopus (Hapalochlaena sp.) envenomation of a 4-year-old boy: a case report. Clin Toxicol. 2008;46(8):760–1.

    Article  Google Scholar 

  109. Walker DG. Survival after severe envenomation by the blue-ringed octopus (Hapalochlaena maculosa). Med J Aust. 1983;2:663–5.

    CAS  PubMed  Google Scholar 

  110. Flachsenberger WA. Respiratory failure and lethal hypotension due to blue-ringed octopus and tetrodotoxin envenomation observed and counteracted in animal models. J Toxicol Clin Toxicol. 1986;24(6):485–502.

    Article  PubMed  Google Scholar 

  111. Williamson JA. The blue-ringed octopus bite and envenomation syndrome. Clin Dermatol. 1987;5:127–33.

    Article  CAS  PubMed  Google Scholar 

  112. Fulghum DD. Octopus bite resulting in granuloma annulare. South Med J. 1986;79:1434.

    Article  CAS  PubMed  Google Scholar 

  113. Terlau H, Olivera BM. Conus venoms: a rich source of novel ion channel targeted peptides. Physiol Rev. 2004;84:41–68.

    Article  CAS  PubMed  Google Scholar 

  114. Yoshiba S. An estimation of the most dangerous species of cone shell: Conus geographus venoms lethal dose to humans. Jpn J Hyg. 1984;39:565–72.

    Article  CAS  Google Scholar 

  115. Dutertre S, Jin AH, Alewood PF, Lewis RJ. Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon. 2014;91:135–44.

    Article  CAS  PubMed  Google Scholar 

  116. Lewis RJ, Dutertre S, Vetter I, et al. Conus venom peptide pharmacology. Pharmacol Rev. 2012;64:259–98.

    Article  CAS  PubMed  Google Scholar 

  117. Bingham JP, Baker MR, Chun JB. Analysis of a snail’s killer cocktail – the milked venom of Conus geographus. Toxicon. 2012;60:1166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Holmes D. Conotoxins: how a deadly snail could help ease pain. Lancet Neurol. 2014;13(9):867–8.

    Article  PubMed  Google Scholar 

  119. Prommer EE. Ziconotide: can we use it in palliative care? Am J Hosp Palliat Med. 2005;22(5):369–74.

    Article  Google Scholar 

  120. Fegen D, Andresen D. Conus geographus envenomation. Lancet. 1997;349(9066):1672.

    Article  Google Scholar 

  121. Haddad V, Clotro M, Simone LR. Report of a human accident caused by Conus regis (Gastropoda, Conidae). Rev Soc Bras Med Trop. 2009;42(4):446–8.

    Article  PubMed  Google Scholar 

  122. Rice RD, Halstead BW. Report of a fatal cone shell sting by Conus geographus (Linnaeus). Toxicon. 1968;5(3):223–4.

    Article  CAS  PubMed  Google Scholar 

  123. Sciani JM, Antoniazzi MM, Neves AC, Pimenta DC. Cathepsin B/X is secreted by Echinometra lucunter sea urchin spines, a structure rich in granular cells and toxins. J Venom Anim Toxins Incl Trop Dis. 2013;91(1):33.

    Article  Google Scholar 

  124. Balhara K, Stolbach A. Marine envenomations. Clin Toxicol. 2014;32(1):223–43.

    Google Scholar 

  125. Nakagawa H, Tu AT, Kimura A. Purification and characterization of contractin A from the pedicellarial venom of sea urchin (Toxopneustes pileolus). Arch Biochem Biophys. 1991;284:279.

    Article  CAS  PubMed  Google Scholar 

  126. Takei M, et al. A toxic substance from the sea urchin Toxopneustes pileolus induces histamine release from rat peritoneal mast cells. Agents Actions. 1991;32:224.

    Article  CAS  PubMed  Google Scholar 

  127. Cracchiolo A, Goldberg L. Local and systemic reactions to puncture injuries by the sea urchin spine and the date palm thorn. Arthritis Rheum. 1977;20(6):1206–12.

    Article  PubMed  Google Scholar 

  128. Orenstein A, Borenstein B, Ronen M, Shimoni T, Klein B. Sea urchin injuries. Harefuah. 1990;118(11):639–40.

    CAS  PubMed  Google Scholar 

  129. O’Neal RL, Halstead BW, Howard LD. Injury to human tissues from sea urchin spines. Calif Med. 1964;101:199–202.

    PubMed  PubMed Central  Google Scholar 

  130. Linaweaver PG. Toxic marine life. Mil Med. 1967;131:437.

    Google Scholar 

  131. Guyot-Drouot M-H, Rouneau D, Rolland J-M, et al. Arthritis, tenosynovitis, fasciitis, and bursitis due to sea urchin spines: a series of 12 cases in Réunion Island. Joint Bone Spine. 2000;67:94–100.

    CAS  PubMed  Google Scholar 

  132. Haneke E, Tosti A, Piraccini BM. Sea urchin granuloma of the nail apparatus: report of 2 cases. Dermatology. 1996;19(2):140–2.

    Article  Google Scholar 

  133. Auerbach PS. Envenomation by aquatic invertebrates. In: Auerbach PS, editor. Wilderness medicine. 4th ed. Philadelphia: Mosby; 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Keith French .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

French, L.K., Horowitz, B.Z. (2016). Marine Vertebrates, Cnidarians and Mollusks. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_148-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_148-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Marine Vertebrates, Cnidarians and Mollusks
    Published:
    28 September 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_148-2

  2. Original

    Marine Vertebrates, Cnidarians and Mollusks
    Published:
    11 May 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_148-1