Skip to main content

Nonlinear Growth Curve Models

  • Conference paper
Dependent Data in Social Sciences Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 145))

Abstract

In the past three decades, the growth curve model (also known as latent curve model) has become a popular statistical methodology for the analysis of longitudinal or, more generally, repeated-measures data. Developed primarily within the latent variable modeling framework, the equivalent model emerged from other fields under the names of linear mixed-effects model, random-effects model, hierarchical linear model, and linear multilevel model. This methodology estimates the so-called growth parameters that describe individuals’ change trajectories across time and are related via linear combinations to the dependent variable. While satisfying in many research settings, oftentimes a linear relation between dependent variable and growth parameters cannot allow for meaningful interpretation of the growth parameters, parsimonious descriptions of the change phenomenon, good adjustment to the data across all values of the time predictor, and realistic extrapolations outside the empirical range of the time predictor. Consequently, nonlinear alternatives have been proposed, for which the growth parameters can be related to the dependent variable via any mathematical function (not just linear combinations). We discuss the theoretical foundations as well as practical implications of estimating nonlinear growth curve models. We also illustrate the methodology with an example from the psychological literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beal, S. L., & Sheiner, L. B. (1982). Estimating population kinetics. Critical Review of Biomedical Engineering, 8, 195–222.

    Google Scholar 

  • Blozis, S. A. (2004). Structured latent curve models for the study of change in multivariate repeated measures. Psychological Methods, 9, 334–353.

    Article  Google Scholar 

  • Blozis, S. A., Conger, K., & Harring, J. (2007). Nonlinear latent curve models for longitudinal data. International Journal of Behavioral Development, 31, 340–346.

    Article  Google Scholar 

  • Boker, S. M., Schreiber, T., Pompe, B., & Bertenthal, B. I. (1998). Nonlinear analysis of perceptual-motor coupling in the development of postural control. In H. Kantz, J. Kurths, & G. Mayer-Kress (Eds.), Nonlinear analysis of physiological data (pp. 251–269). Berlin, Germany: Springer.

    Chapter  Google Scholar 

  • Braun, M. T., Kuljanin, G., & DeShon, R. P. (2013). Spurious relationships in the analysis of longitudinal data in organizational research. Organizational Research Methods, 16, 302–330.

    Article  Google Scholar 

  • Browne, M. W. (1993). Structured latent curve models. In C. M. Cuadras & C. R. Rao (Eds.), Multivariate analysis: Future directions 2 (pp. 171–197). Amsterdam, The Netherlands: Elsevier Science Publisher.

    Google Scholar 

  • Browne, M. W., & Du Toit, S. H. C. (1991). Models for learning data. In L. M. Collins & J. L. Horn (Eds.), Best methods for the analysis of change (pp. 47–68). Washington, DC: American Psychological Association.

    Google Scholar 

  • Bryk, A. S., & Raudenbush, S. W. (1987). Application of hierarchical linear models to assessing change. Psychological Bulletin, 101, 147–158.

    Article  Google Scholar 

  • Chihara, T. S. (1978). An introduction to orthogonal polynomials. New York: Routledge.

    MATH  Google Scholar 

  • Cudeck, R., & Harring, J. R. (2007). Analysis of nonlinear patterns of change with random coefficient models. Annual Review of Psychology, 58, 615–637.

    Article  Google Scholar 

  • Davidian, M., & Giltinan, D. M. (1995). Nonlinear models for repeated measurement data. London, UK: Chapman & Hall.

    Google Scholar 

  • Draper, N. R., & Smith, H. (1998). Applied regression analysis (3rd ed.). New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Durkin, M., Prescott, L., Furchtgott, E., Cantor, J., & Powell, D. A. (1995). Performance but not acquisition of skill learning is severely impaired in the elderly. Archives of Gerontology and Geriatrics, 20, 167–183.

    Article  Google Scholar 

  • Fekedulegn, D., Mac Siurtain, M., & Colbert, J. (1999). Parameter estimation of nonlinear growth models in forestry. Silva Fennica, 33, 327–336.

    Article  Google Scholar 

  • Ghisletta, P., Kennedy, K. M., Rodrigue, K. M., Lindenberger, U., & Raz, N. (2010). Adult age differences and the role of cognitive resources in perceptual-motor skill acquisition: Application of a multilevel negative exponential model. Journal of Gerontology: Psychological Sciences, 65, 163–173.

    Article  Google Scholar 

  • Ghisletta, P., & Lindenberger, U. (2004). Static and dynamic longitudinal structural analyses of cognitive changes in old age. Gerontology, 50, 12–16.

    Article  Google Scholar 

  • Ghisletta, P., & McArdle, J. J. (2001). Latent growth curve analyses of the development of height. Structural Equation Modeling, 8, 531–555.

    Article  MathSciNet  Google Scholar 

  • Grimm, K. J., McArdle, J. J., & Hamagami, F. (2007). Nonlinear growth mixture models in research on cognitive aging. In K. van Monfort, H. Oud, & A. Satorra (Eds.), Longitudinal models in the behavioural and related sciences (pp. 267–294). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Grimm, K. J., Ram, N., & Hamagami, F. (2011). Nonlinear growth curves in developmental research. Child Developmental, 82, 1357–1371.

    Article  Google Scholar 

  • Grimm, K. J., & Widaman, K. F. (2010). Residual structure in latent growth curve modeling. Structural Equation Modeling, 17, 424–442.

    Article  MathSciNet  Google Scholar 

  • Hall, D. B., & Clutter, M. (2004). Multivariate multilevel nonlinear mixed effects models for timber yield predictions. Biometrics, 60, 16–24.

    Article  MathSciNet  MATH  Google Scholar 

  • Hayduk, L. (2014). Seeing perfectly fitting factor models that are causally misspecified: Understanding that close-fitting models can be worse. Educational and Psychological Measurement, 74, 905–926.

    Article  Google Scholar 

  • Jordan, L., Daniels, R. F., Clarke, A. I., & He, R. (2005). Multilevel nonlinear mixed-effects models for the modeling of earlywood and latewood microfibril angle. Forest Science, 51, 357–371.

    Google Scholar 

  • Jöreskog, K. G. (1970). Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 23, 121–145.

    Article  MATH  Google Scholar 

  • Kennedy, K. M., Partridge, T., & Raz, N. (2008). Age-related differences in acquisition of perceptual-motor skills: Working memory as a mediator. Aging, Neuropsychology, and Cognition, 15, 165–183.

    Article  Google Scholar 

  • Kuljanin, G., Braun, M. T., & DeShon, R. P. (2011). A cautionary note on modeling growth trends in longitudinal data. Psychological Methods, 16, 249–264.

    Article  Google Scholar 

  • Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  MATH  Google Scholar 

  • Lance, C. E. (1988). Residual centering, exploratory and confirmatory moderator analysis, and decomposition of effects in path models containing interactions. Applied Psychological Measurement, 12, 163–175.

    Article  Google Scholar 

  • McArdle, J. J. (1986). Latent growth within behavior genetic models. Behavior Genetics, 16, 163–200.

    Article  Google Scholar 

  • McArdle, J. J. (2001). Growth curve analysis. In N. J. Smelser & P. B. Baltes (Eds.), The international encyclopedia of the behavioral and social sciences (pp. 6439–6445). New York, NY: Pergamon Press.

    Chapter  Google Scholar 

  • McArdle, J. J., & Epstein, D. B. (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133.

    Article  Google Scholar 

  • McArdle, J. J., Ferrer-Caja, E., Hamagami, F., & Woodcock, R. W. (2002). Comparative longitudinal structural analyses of the growth and decline of multiple intellectual abilities over the life span. Developmental Psychology, 38, 115–142.

    Article  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London, UK: Chapman and Hall.

    Book  MATH  Google Scholar 

  • Meredith, W., & Tisak, J. (1985, July). “Tuckerizing” curves. Paper presented at the Annual Meetings of Psychometric Society. Santa Barbara, CA.

    Google Scholar 

  • Meredith, W., & Tisak, J. (1990). Latent curve analysis. Psychometrika, 55, 107–122.

    Article  Google Scholar 

  • Nelder, J. A., & Wedderburn, R. M. (1972). Generalized linear models. Journal of the Royal Statistical Society, Series A, 135, 370–384.

    Article  Google Scholar 

  • Peek, M. S., Russek-Cohen, E., Wait, D. A., & Forseth, I. N. (2002). Physiological response curve analysis using nonlinear mixed models. Oecologia, 132, 175–180.

    Article  Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (1995). Approximations to the log-likelihood function in the nonlinear mixed-effects model. Journal of Computational and Graphical Statistics, 4, 12–35.

    Google Scholar 

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effect models in S and S-PLUS. New York, NY: Springer.

    Book  Google Scholar 

  • Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D., EISPACK authors, & R-core. (2014, March). nlme: Linear and nonlinear mixed effects models. Available from http://cran.r-project.org/web/packages/nlme/index.html

  • Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics, 14, 1–17.

    Article  MATH  Google Scholar 

  • Raz, N., Williamson, A., Gunning-Dixon, F., Head, D., & Acker, J. D. (2000). Neuroanatomical and cognitive correlates of adult age differences in acquisition of a perceptual-motor skill. Microscopy Research and Technique, 51, 85–93.

    Article  Google Scholar 

  • Rovine, M. J., & Molenaar, P. C. M. (2000). A structural modeling approach to a multilevel random coefficients model. Multivariate Behavioral Research, 35, 51–88.

    Article  Google Scholar 

  • Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences, 38, 1128–1140.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Sit, V., & Poulin-Costello, M. (1994). Catalog of curves for curve fitting. Victoria, BC: Ministry of Forestry.

    Google Scholar 

  • Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). London, UK: Sage.

    Google Scholar 

  • Tucker, L. R. (1958). Determination of parameters of a functional relation by factor analysis. Psychometrika, 23, 19–23.

    Article  MATH  Google Scholar 

  • Vandergrift, N. A., Curran, P. J., & Bauer, D. J. (2002, August). Methods for modeling nonlinearity in latent curve models. Paper presented at the American Psychological Association. Chicago, IL.

    Google Scholar 

  • von Oertzen, T. (2010). Using the structured latent curve approximation for developmental simulations (Tech. Rep.). Berlin, Germany: Max Planck Institute for Human Development.

    Google Scholar 

  • Vonesh, E. F., & Chinchilli, V. M. (1996). Linear and nonlinear models for the analysis of repeated measurements. New York, NY: Dekker.

    Google Scholar 

  • Wolfinger, R. D. (1999). Fitting nonlinear mixed models with the new NLMIXED procedure. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Woodcock, R., & Johnson, M. B. (1989). Woodcock-johnson psychoeducational battery - revised. Chicago, IL: Riverside.

    Google Scholar 

  • Yuancai, L., Marques, C. P., & Macedo, F. W. (1997). Comparison of schnute’s and bertalanffy-richards’ growth functions. Forest Ecology and Management, 96, 283–288.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Ghisletta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ghisletta, P., Cantoni, E., Jacot, N. (2015). Nonlinear Growth Curve Models. In: Stemmler, M., von Eye, A., Wiedermann, W. (eds) Dependent Data in Social Sciences Research. Springer Proceedings in Mathematics & Statistics, vol 145. Springer, Cham. https://doi.org/10.1007/978-3-319-20585-4_2

Download citation

Publish with us

Policies and ethics