Skip to main content

Microbial Toxins in Foods: The Importance of Escherichia coli, a Versatile Enemy

  • Chapter
  • First Online:
Microbial Toxins and Related Contamination in the Food Industry

Abstract

When speaking of food microbiology, analysts and hygiene professionals are accustomed to starting their discussions with a relatively less number of food pathogen bacteria, in spite of the great variety of microbiological risks in the food and beverage sector. A few micro-organisms are well known with reference to the possibility of showing diversified strains. In other words, one specific micro-organism can spread into the environment and in selected ‘culture media’ like foods with the possible ‘permutation’ of the original strain in several sub-strains with different properties and features. This is the situation of Escherichia coli, the most important micro-organism in the group of so-called ‘Coliform’ bacteria. E. coli is a typical commensal of the intestinal tract of animals and humans. For its abundant presence in the colonic microflora, it is used as one of the most important indicators of faecal contamination in food and water. However, some subsets within this species have acquired specific virulence genes. Enteric strains have been divided into different pathotypes, depending on virulence factors and pathogenic features. In the present chapter, various E. coli pathotypes are described; particular relevance is given to toxin-producing strains. Additionally, this work intends to provide useful information about related toxins, their known chemical properties and the most used analytical methods in the food sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAF:

Aggregative Adherence Fimbrium

A/E:

Attaching-and-Effacing

CT:

Cholera Toxin

CF:

Colonisation Factor

CFU:

Colony Forming Unit

DNA:

Deoxyribonucleic Acid

DAEC:

Diffusely Adherent E. coli

EAEC:

Enteroaggregative E. coli

EAST-1:

Enteroaggregative Heat-Stable Toxin 1

EHEC:

Enterohaemorrhagic E. coli

EIEC:

Enteroinvasive E. coli

EPEC:

Enteropathogenic E. coli

ETEC:

Enterotoxigenic E. coli

ELISA:

Enzyme-Linked Immunosorbent Assay

FDA:

Food and Drug Administration

LT:

Heat-Labile

ST:

Heat-Stable

STa:

Heat-Stable a

STb:

Heat-Stable b

IMS:

Immunomagnetic Separation

LEE:

Locus Enterocyte Effacement

LPS:

Lipopolysaccharide

PCR:

Polymerase Chain Reaction

RTE:

Ready-to-Eat

RKI:

Robert Koch Institute

SPATE:

Serine Protease Auto Transporter of Enterobacteriaceae

Stx:

Shiga Toxin

STEC:

Shiga Toxin-Producing E. coli

ShET-1:

Shigella Enterotoxin 1

SMAC:

Sorbitol-MacConkey

VTEC:

Verotoxigenic E. coli

References

  • Abdul-Raouf UM, Beuchat LR, Zhao T, Ammar MS (1995) Growth and verotoxin 1 production by Escherichia coli O157:H7 in ground roasted beef. Int J Food Microbiol 23(1):79–88. doi:10.1016/0168-1605(94)90223-2

    Article  Google Scholar 

  • Alderete JF, Robertson DC (1978) Purification and chemical characterization of the heat-stable enterotoxin produced by porcine strains of enterotoxigenic Escherichia coli. Infect Immun 19(3):1021–1030

    CAS  Google Scholar 

  • Bergthorsson U, Ochman H (1998) Distribution of chromosome length variation in natural isolates of Escherichia coli. Mol Biol Evol 15(1):6–16

    Article  CAS  Google Scholar 

  • Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A, Peters G, Karch H (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany 2011: a microbiological study. Lancet Infect Dis 11(9):671–676. doi:10.1016/S1473-3099(11)70165-7

    Article  CAS  Google Scholar 

  • Boisen N, Struve C, Scheutz F, Krogfelt KA, Nataro JP (2008) New adhesin of enteroaggregative Escherichia coli related to the Afa/Dr/AAF family. Infect Immun 76(7):3281–3292. doi:10.1128/IAI.01646-07

    Article  CAS  Google Scholar 

  • Boisen N, Ruiz-Perez F, Scheutz F, Krogfelt KA, Nataro JP (2009) Short report: high prevalence of serine protease autotransporter cytotoxins among strains of enteroaggregative Escherichia coli. Am J Trop Med Hyg 80(2):294–301

    CAS  Google Scholar 

  • Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM, Strockbine NA (2005) Non-O157 Shiga toxin–producing Escherichia coli infections in the United States, 1983–2002. J Inf Dis 192(8):1422–1429. doi:10.1086/466536

    Article  Google Scholar 

  • Bürk C, Dietrich R, Acar G, Moravek M, Bulte M, Märtlbauer E (2003) Identification and characterization of a new variant of Shiga toxin 1 in Escherichia coli ONT:H19 of bovine origin. J Clin Microbiol 41(5):2106–2112. doi:10.1128/JCM.41.5.2106-2112.2003

    Article  Google Scholar 

  • Byappanahalli MN, Fujioka RS (1998) Evidence that tropical soil can support the growth of Escherichia coli. Water Sci Technol 38(12):171–174. doi:10.1016/S0273-1223(98)00820-8

    Article  CAS  Google Scholar 

  • Cerna JF, Nataro JP, Estrada-Garcia T (2003) Multiplex PCR for detection of three plasmid-borne genes of Enteroaggregative Escherichia coli strains. J Clin Microbiol 41(5):2138–2140. doi:10.1128/JCM.41.5.2138-2140.2003

    Article  CAS  Google Scholar 

  • Connell TD (2007) Cholera toxin, LT-I, LT-IIa and LT-IIb: the critical role of ganglioside binding in immunomodulation by type I and type II heat-labile enterotoxins. Expert Rev Vaccines 6(5):821–834. doi:10.1586/14760584.6.5.821

    Article  CAS  Google Scholar 

  • Cox LJ, Keller N, van Schothorst M (1988) The use and misuse of quantitative determinations of Enterobacteriaceae in food microbiology. J Appl Bacteriol Symp Suppl 17:237S–249S. doi:10.1111/j.1365-2672.1988.tb04654.x

    Article  CAS  Google Scholar 

  • Cryan B (1990) Comparison of three assay systems for detection of enterotoxigenic Escherichia coli heat-stable enterotoxin. J Clin Microbiol 28(4):792–794

    CAS  Google Scholar 

  • Danielsson ML, Mollby R, Brag H, Hansson N, Jonsson P, Olsson E, Wadstrom T (1979) Enterotoxigenic enteric bacteria in foods and outbreaks of food-borne diseases in Sweden. J Hyg (Lond) 83(1):33–40. doi:10.1017/S0022172400025808

    Article  CAS  Google Scholar 

  • Dautin N (2010) Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function. Toxins 2(6):1179–1206. doi:10.3390/toxins2061179

    Article  CAS  Google Scholar 

  • Desmarchelier PM, Fegan N (2003) Enteropathogenic Escherichia coli. In: Hocking AD (ed) Foodborne microorganisms of public health significance, 6th edn. Australian Institute of Food Science and Technology (NSW Branch), Sydney, pp 267–310

    Google Scholar 

  • Downes FP, Green JH, Greene K, Stockbine N, Wells JG, Wachsmuth IK (1989) Development and evaluation of enzyme-linked immunosorbent assays for detection of Shiga-like toxin I and Shiga-like toxin II. J Clin Microbiol 27(2):1292–1297

    CAS  Google Scholar 

  • Dreyfus LA, Frantz JC, Robertson DC (1983) Chemical properties of heat-stable enterotoxins produced by enterotoxigenic Escherichia coli of different host origins. Infect Immun 42(2):539–548

    CAS  Google Scholar 

  • Fegan N, Vanderlinde P, Higgs G, Desmarchelier P (2004) The prevalence and concentration of Escherichia coli O157 in faeces of cattle from different production systems at slaughter. J Appl Microbiol 97(2):362–370. doi:10.1111/j.1365-2672.2004.02300.x

    Article  CAS  Google Scholar 

  • Feng P (2013) Escherichia coli. In: Jebbé RG, Garcia S (eds) Guide to foodborne pathogens, 2nd edn. Wiley, New York, pp 222–240

    Chapter  Google Scholar 

  • Fraser ME, Chernaia MM, Kozlov YV, James MN (1994) Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nat Struct Biol 1(1):59–64. doi:10.1038/nsb0194-59

    Article  CAS  Google Scholar 

  • Fratamico PM, Bagi LK, Pepe T (2000) A multiplex polymerase chain reaction assay for rapid detection and identification of Escherichia coli O157:H7 in foods and bovine feces. J Food Prot 63(8):1032–1037

    CAS  Google Scholar 

  • Fremaux B, Prigent-Combaret C, Vernozy-Rozand C (2008) Long-term survival of shiga toxin-producing Escherichia coli in cattle effluents and environment: an updated review. Vet Microbiol 132(1–2):1–18. doi:10.1016/j.vetmic.2008.05.015

    Article  CAS  Google Scholar 

  • Fujii Y, Okamuro Y, Hitotsubashi S, Saito A, Akashi N, Okamoto K (1994) Effects of alterations of basic amino acid residues of Escherichia coli heat-stable enterotoxin II on enterotoxicity. Infect lmmun 62(6):2295–2301

    CAS  Google Scholar 

  • Girón JA, Ho ASY, Schoolnik GK (1991) An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science 254(5032):710–713. doi:10.1126/science.1683004

    Article  Google Scholar 

  • Gonzales L, Ali ZB, Nygren E, Wang Z, Karlsson S, Zhu B, Quiding-Järbrink M, Sjöling Å (2013) Alkaline pH is a signal for optimal production and secretion of the heat labile toxin, LT in enterotoxigenic Escherichia coli (ETEC). PLoS ONE 8(9):1–12. doi:10.1371/journal.pone.0074069

    Article  Google Scholar 

  • Guarino A, Capano G, Malamisura B, Alessio M, Guandalini S, Rubino A (1987) Production of Escherichia coli STa-like heat-stable enterotoxin by Citrobacter freundii isolated from humans. J Clin Microbiol 25(1):110–114

    CAS  Google Scholar 

  • Guth BE, Twiddy EM, Trabulsi LR, Holmes RK (1986) Variation in chemical properties and antigenic determinants among type II heat-labile enterotoxins of Escherichia coli. Infect Immun 54(2):529–536

    CAS  Google Scholar 

  • Gyles CL (2007) Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85 Suppl 13:E45–E62. doi:10.2527/jas.2006-508

    Article  Google Scholar 

  • Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 Strain EDL 933. Infect Immun 63(3):1055–1061

    CAS  Google Scholar 

  • Hajishengallis G, Connell TD (2013) Type II heat-labile enterotoxins: structure, function, and immunomodulatory properties. Vet Immunol Immunopathol 152(1–2):68–77. doi:10.1016/j.vetimm.2012.09.034

    Article  CAS  Google Scholar 

  • He X, Quinones B, McMahon S, Mandrell RE (2012) A single-step purification and molecular characterization of functional Shiga toxin 2 variants from pathogenic Escherichia coli. Toxins 4(7):487–504. doi:10.3390/toxins4070487

    Article  CAS  Google Scholar 

  • Henderson IR, Nataro JP (2001) Virulence functions of autotransporter proteins. Infect Immun 69(3):1231–1243. doi:10.1128/IAI.69.3.1231-1243.2001

    Article  CAS  Google Scholar 

  • Hussein HS (2007) Prevalence and pathogenicity of Shiga toxin-producing Escherichia coli in beef cattle and their products. J Anim Sci 85:E63–E72. doi:10.2527/jas.2006-421

    Article  CAS  Google Scholar 

  • Jackson MP, Neill RJ, O’Brien AD, Holmes RH, Newland JW (1987) Nucleotide sequence analysis and comparison of the structural genes for Shiga-like toxin I and Shiga-like toxin II encoded by bacteriophages from Escherichia coli 933. FEMS Microbiol Lett 44:109–114. doi:10.1111/j.1574-6968.1987.tb02252.x

    Article  CAS  Google Scholar 

  • Jallat C, Livrelli V, Darfeuille-Michaud A, Rich C, Joly B (1993) Escherichia coli strains involved in diarrhea in France: high prevalence and heterogeneity of diffusely adhering strains. J Clin Microbiol 31(8):2031–2037

    CAS  Google Scholar 

  • Johnson WM, Lior H, Johnson KG (1978) Heat-stable enterotoxin from Escherichia coli: factors involved in growth and toxin production. Infect Immun 20(2):352–359

    CAS  Google Scholar 

  • Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140. doi:10.1038/nrmicro818

    Article  CAS  Google Scholar 

  • Karch H, Janetzki-Mittmann C, Aleksic S, Datz M (1996) Isolation of enterohemorrhagic Escherichia coli O157 strains from patients with hemolytic-uremic syndrome by using immunomagnetic separation, DNA-based methods, and direct culture. J Clin Microbiol 34(3):516–519

    CAS  Google Scholar 

  • Karmali MA, Mascarenhas M, Shen S, Ziebell K, Johnson S, Reid-Smith R, Isaac-Renton J, Clark C, Rahn K, Kaper JB (2003) Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41(11):4930–4940. doi:10.1128/JCM.41.11.4930-4940.2003

    Article  CAS  Google Scholar 

  • Kaur P, Chakraborti A, Asea A (2010) Enteroaggregative Escherichia coli: an emerging enteric food borne pathogen. Interdiscip Perspect Infect Dis. doi:10.1155/2010/254159

  • Klipstein FA, Engert RF, Houghten RA (1983) Immunological properties of purified Klebsiella pneumoniae heat-stable enterotoxin. Infect Immun 42(2):838–841

    CAS  Google Scholar 

  • Kunkel SL, Robertson DC (1979) Purification and chemical characterization of the heat-labile enterotoxin produced by enterotoxigenic Escherichia coli. Infect Immun 25(2):586–596

    CAS  Google Scholar 

  • Leyer GJ, Wang LL, Johnson EA (1995) Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol 61(10):3752–3755

    CAS  Google Scholar 

  • Lortie LA, Dubreuil JD, Harel J (1991) Characterization of Escherichia coli strains producing heat-stable enterotoxin b (STb) isolated from humans with diarrhea. J Clin Microbiol 29(3):656–659

    CAS  Google Scholar 

  • Louise CB, Obrig TG (1995) Specific interaction of Escherichia coli O157:H7-derived Shiga-like toxin II with human renal endothelial cells. J Infect Dis 172(5):1397–1401

    Article  CAS  Google Scholar 

  • Matecko I, Burmann BM, Schweimer K, Kalbacher H, Einsiedel J, Gmeiner P, Rösch P (2008) Structural characterization of the E. coli heat-stable enterotoxin STh. Open Spectrosc J 2:34–39

    Article  CAS  Google Scholar 

  • Mellies JL, Navarro-Garcia F, Frederickson J, Nataro JP, Kaper JB (2001) The espC pathogenicity island of enteropathogenic E. coli encodes an enterotoxin. Infect Immun 69(1):315–324. doi:10.1128/IAI.69.1.315-324.2001

    Article  CAS  Google Scholar 

  • Ménard LP, Dubreuil JD (2002) Enteroaggregative Escherichia coli heat-stable enterotoxin1(EAST1): a new toxin with an old twist. Crit Rev Microbiol 28(1):43–60

    Article  Google Scholar 

  • Menard LP, Lussier JG, Lepine F, Paiva de Sousa C, Dubreuil JD (2004) Expression, purification and biochemical characterization of enteroaggregative Escherichia coli heat-stable enterotoxin 1. Protein Expr Purif 33(2):223–231. doi:10.1016/j.pep.2003.09.008

    Article  CAS  Google Scholar 

  • Meng J, Feng P, Doyle MP (2001) Pathogenic Escherichia coli. In: Pouch Downes F, Ito KA (eds) Compendium methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washigton DC, pp 331–342

    Google Scholar 

  • Meng J, Schroeder CM (2007) Escherichia coli. Chapter 1 In: Simjee S (ed) Foodborne diseases. Humana Press, Totowa, pp 1–25

    Google Scholar 

  • Molina PM, Parma AE, Sanz ME (2003) Survival in acidic medium of shiga toxin-producing Escherichia coli O157:H7 and non-O157:H7 isolated in Argentina. BMC Microbiol 3:17. doi:10.1186/1471-2180-3-17

    Article  Google Scholar 

  • Moseley SL, Echeverria P, Seriwatana J, Tirapat C, Chaicumpa W, Sakuldaipeara T, Falkow S (1982) Identification of enterotoxigenic Escherichia coli by colony hybridization using three enterotoxin gene probes. J Infect Dis 145(6):863–869. doi:10.1093/infdis/145.6.863

    Article  CAS  Google Scholar 

  • Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N (2009) The structure of acytolytic alpha-helical toxin pore reveals its assembly mechanism. Nature 459(7247):726–730. doi:10.1038/nature08026

    Article  CAS  Google Scholar 

  • Nardi AR, Salvadori MR, Coswig LT, Gatti MS, Leite DS, Valadares GF, Neto MG, Shocken-Iturrino RP, Blanco JE, Yano T (2005) Type 2 heat-labile enterotoxin (LT-II)-producing Escherichia coli isolated from ostriches with diarrhea. Vet Microbiol 105(3–4):245–249. doi:10.1016/j.vetmic.2004.11.005

    Article  CAS  Google Scholar 

  • Nataro JP, Deng Y, Maneval DR, German AL, Martin WC, Levine MM (1992) Aggregative adherence fimbriae I of enteroaggregative Escherichia coli mediate adherence to HEp-2 cells and hemagglutination of human erythrocytes. Infect Immun 60(6):2297–2304

    CAS  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrheagenic Escherichia coli. Clin Microbiol Rev 11(1):142–201

    CAS  Google Scholar 

  • Nawar HF, King-Lyons ND, Hu JC, Pasek RC, Connell TD (2010) LT-IIc, a new member of the type II heat-labile enterotoxin family encoded by an Escherichia coli strain obtained from a nonmammalian host. Infect Immun 78(11):4705–4713. doi:10.1128/IAI.00730-10

    Article  CAS  Google Scholar 

  • Neill MA, Tarr PI, Taylor DN, Wolf M (2001) Escherichia coli. In: Hui YH, Pierson MD, Gorham JR (eds) Foodborne disease handbook: diseases caused by bacteria, 2nd edn. Marcel Dekker, New York, pp 169–212

    Google Scholar 

  • Ochman H, Jones IB (2000) Evolutionary dynamics of full genome content in Escherichia coli. EMBO J 19(24):6637–6643. doi:10.1093/emboj/19.24.6637

    Article  CAS  Google Scholar 

  • Okamoto K, Fujii Y, Akashi N, Hitotsubashi S, Kurazono H, Karasawa T, Takeda Y (1993) Identification and characterization of heat-stable enterotoxin II-producing Escherichia coli from patients with diarrhea. Microbiol lmmunol 37(5):411–414. doi:10.1111/j.1348-0421.1993.tb03230.x

    Article  CAS  Google Scholar 

  • O’Sullivan J, Bolton DJ, Duffy G, Baylis C, Tozzoli R, Wasteson Y, Lofdahl S (2007) Methods for detection and molecular characterisation of pathogenic Escherichia coli. Ashtown Food Research Centre, Dublin. http://www.antimicrobialresistance.dk/data/images/protocols/e%20coli%20methods.pdf. Accessed 23 March 2015

  • Ottaviani F (1996) Enterobacteriaceae, coliformi totali ed Escherichia coli: microrganismi e acidità. In: Ottaviani (ed) Microbiologia dei prodotti di origine vegetale. Chiriotti Editori, Pinerolo, pp 203–242

    Google Scholar 

  • Pradel N, Livrelli V, De Champs C, Palcoux JB, Reynaud A, Scheutz F, Sirot J, Joly B, Forestier C (2000) Prevalence and characterization of Shiga toxin-producing Escherichia coli isolated from cattle, food, and children during a one-year prospective study in France. J Clin Microbiol 38(3):1023–1031

    CAS  Google Scholar 

  • Qadri F, Svennerholm AM, Faruque AS, Sack RB (2005) Enterotoxigenic Escherichia coli in developing countries: epidemiology, microbiology, clinical features, treatment, and prevention. Clin Microbiol Rev 18(3):465–483. doi:10.1128/CMR.18.3.465-483.2005

    Article  Google Scholar 

  • Rasooly R, Do PM (2010) Shiga toxin Stx2 is heat-stable and not inactivated by pasteurization. Int J Food Microbiol 136(3):290–294. doi:10.1016/j.ijfoodmicro.2009.10.005

    Article  CAS  Google Scholar 

  • RKI(2011) EHEC O104:H4—The outbreak 2011. The Robert Koch Institute (RKI), Berlin. http://www.rki.de/EN/Content/Prevention/EHEC_O104/ehec_O104_node_en.html;jsessionid=03F7BD05F267608E35C50EEB6C26E1EB.2_cid381. Accessed 23 March 2015

  • Sack RB, Sack DA, Mehlman IJ, Orskov F, Orskov (1977) Enterotoxigenic Escherichia coli isolated from food. J Infect Dis 135(2):313–317. doi:10.1093/infdis/135.2.313

    Article  CAS  Google Scholar 

  • Sansonetti P (2002) Host–pathogen interactions: the seduction of molecular cross talk. Gut 50 Issue supplement 3:S2–S8. doi:10.1136/gut.50.suppl_3.iii2

    Google Scholar 

  • Sato T, Ozaki H, Hata Y, Kitagawa Y, Katsube Y, Shimonishi Y (1994) Structural characteristics for biological activity of heat-stable enterotoxin produced by enterotoxigenic Escherichia coli: X-ray crystallography of weakly toxic and nontoxic analogs. Biochemistry 33(29):8641–8650. doi:10.1021/bi00195a004

    Article  CAS  Google Scholar 

  • Sato T, Shimonishi Y (2004) Structural features of Escherichia coli heat-stable enterotoxin that activates membrane-associated guanylyl cyclase. J Pept Res 63(2):200–206. doi:10.1111/j.1399-3011.2004.00125.x

    Article  CAS  Google Scholar 

  • Savarino SJ, Fasano A, Watson J, Martin BM, Levine MM, Guandalini S, Guerry P (1993) Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci USA 90, 7:3093–3097

    Google Scholar 

  • Sheikh J, Czeczulin JR, Harrington S, Hicks S, Henderson IR, Le Bouguenec C, Gounon P, Phillips A, Nataro JP (2002) A novel dispersin protein in enteroaggregative Escherichia coli. J Clin Invest 110(9):1329–1337. doi:10.1172/JCI16172

    Article  CAS  Google Scholar 

  • Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, Hol WG (1993a) Refined structure of Escherichia coli heat labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230(3):890–918. doi:10.1006/jmbi.1993.1209

    Article  CAS  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, van Zanten BA, Berghuis AM, Hol WG (1992) Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355(6360):561–564. doi:10.1038/355561a0

    Article  CAS  Google Scholar 

  • Sixma TK, Pronk SE, Kalk KH, Wartna ES, van Zanten BA, Witholt B, Hol WG (1991) Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351, 6325:371–377. doi:10.1038/351371a0

  • Sixma TK, Stein PE, Hol WG, Read RJ (1993b) Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity. Biochemistry 32(1):191–198. doi:10.1021/bi00052a025

    Article  CAS  Google Scholar 

  • Solo-Gabriele HM, Wolfert MA, Desmarais TR, Palmer CJ (2000) Sources of Escherichia coli in a coastal subtropical environment. Appl Environ Microbiol 66(1):230–237. doi:10.1128/AEM.66.1.230-237.2000

    Article  CAS  Google Scholar 

  • Solomon EB, Yaron S, Matthews KR (2002) Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68(1):397–400. doi:10.1128/AEM.68.1.397-400.2002

    Article  CAS  Google Scholar 

  • Soon JM, Seaman P, Baines RN (2013) Escherichia coli O104:H4 outbreak from sprouted seeds. Int J Hyg Environ Health 216(3):346–354. doi:10.1016/j.ijheh.2012.07.005

    Article  CAS  Google Scholar 

  • Stacy-Phipps S, Mecca JJ, Weiss JB (1995) Multiplex PCR assay and simple preparation method for stool specimens detect enterotoxigenic Escherichia coli DNA during the course of infection. J Clin Microbiol 33(5):1054–1059

    CAS  Google Scholar 

  • Stein PE, Boodhoo A, Tyrrell GJ, Brunton JL, Read RJ (1992) Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 355(6362):748–750. doi:10.1038/355748a0

    Article  CAS  Google Scholar 

  • Stenutz R, Weintraub A, Widmalm G (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30(3):382–403. doi:10.1111/j.1574-6976.2006.00016.x

    Article  CAS  Google Scholar 

  • Streatfield SJ, Sandkvist M, Sixma TK, Bagdasarian M, Hol WG, Hirst TR (1992) Intermolecular interactions between the A and B subunits of heat-labile enterotoxin from Escherichia coli promote holotoxin assembly and stability in vivo. Proc Natl Acad Sci USA 89(24):12140–12144

    Article  CAS  Google Scholar 

  • Takao T, Tominaga N, Shimonishi Y, Hara S, Inoue T, Miyama A (1984) Primary structure of heat-stable enterotoxin produced by Yersinia enterocolitica. Biochem Biophys Res Commun 125(3):845–851. doi:10.1016/0006-291X(84)91360-3

    Article  CAS  Google Scholar 

  • Taneike I, Zhang HM, Wakisaka-Saito N, Yamamoto T (2002) Enterohemolysin operon of Shiga toxin-producing Escherichia coli: a virulence function of inflammatory cytokine production from human monocytes. FEBS Lett 524(1–3):219–224. doi:10.1016/S0014-5793(02)03027-2

    Article  CAS  Google Scholar 

  • Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O’Brien AD, Samuel JE (1993) Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect Immun 61(8):3392–3402

    CAS  Google Scholar 

  • Topp E, Welsh M, Tien YC, Dang A, Lazarovits G, Conn K, Zhu H (2003) Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol Ecol 44(3):303–308. doi:10.1016/S0168-6496(03)00055-2

    Article  CAS  Google Scholar 

  • Tornieporth NG, John J, Salgado K, de Jesus P, Latham E, Melo MC, Gunzburg ST, Riley LW (1995) Differentiation of pathogenic Escherichia coli strains in Brazilian children by PCR. J Clin Microbiol 33(5):1371–1374

    CAS  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet. doi:10.1371/journal.pgen.1000344

    Google Scholar 

  • van Elsas JD, Semenov AV, Costa R, Trevors JT (2011) Survival of Escherichia coli in the environment: fundamental and public health aspects. ISME J 5(2):173–183. doi:10.1038/ismej.2010.80

    Article  Google Scholar 

  • WHO (2011) Enterohaemorrhagic Escherichia coli (EHEC), Fact sheet No 125, December 2011. http://www.who.int/mediacentre/factsheets/fs125/en/. Accessed 23 March 2015

  • Willshaw GA, Smith HR, Scotland SM, Field AM, Rowe B (1987) Heterogeneity of Escherichia coli phages encoding Vero cytotoxins: comparison of cloned sequences determining VT1 and VT2 and development of specific gene probes. J Gen Microbiol 133(5):1309–1317. doi:10.1099/00221287-133-5-1309

    CAS  Google Scholar 

  • Yamamoto T, Wakisaka N, Sato F, Kato A (1997) Comparison of the nucleotide sequence of enteroaggregative Escherichia coli heat-stable enterotoxin1genes among diarrhea-associated Escherichia coli. FEMS Microbiol Lett 147(1):89–95. doi:10.1111/j.1574-6968.1997.tb10225.x

    Article  CAS  Google Scholar 

  • Yamanaka H, Fuke Y, Hitotsubashi S, Fujii Y, Okamoto K (1993) Functional properties of pro region of Escherichia coli heat-stable enterotoxin. Microbiol Immunol 37(3):195–205. doi:10.1111/j.1348-0421.1993.tb03200.x

    Article  CAS  Google Scholar 

  • Yolken RH, Greenberg HB, Merson MH, Sack RB, Kapikian AZ (1977) Enzyme-linked immunosorbent assay for detection of Escherichia coli heat-labile enterotoxin. J Clin Microbiol 6(5):439–444

    CAS  Google Scholar 

  • Zhang W, Bielaszewska M, Kuczius T, Karch H (2002) Identification, characterization, and distribution of a Shiga toxin 1 gene variant (stx(1c)) in Escherichia coli strains isolated from humans. J Clin Microbiol 40(4):1441–1446. doi:10.1128/JCM.40.4.1441-1446.2002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Parisi .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Caruso, G., Santi Delia, A., Caruso, G., Parisi, S., Laganà, P. (2015). Microbial Toxins in Foods: The Importance of Escherichia coli, a Versatile Enemy. In: Microbial Toxins and Related Contamination in the Food Industry. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-20559-5_4

Download citation

Publish with us

Policies and ethics