Skip to main content

Oscillators for Energy Harvesting

  • Chapter
  • First Online:
Nonlinearity in Energy Harvesting Systems
  • 889 Accesses

Abstract

The aim of this chapter is to briefly explain fundamental concepts such as linear and nonlinear oscillators and transducers since they are required for understanding the energy harvesting principle. We discuss the model of free and harmonically driven linear and nonlinear oscillators. In particular, we show that the solution of a forced linear oscillator is a harmonic oscillation at the frequency of the external signal. We discuss the principles of nonlinear oscillators, resonance in nonlinear oscillator and multistability. In order to use an oscillator for the energy harvesting process, one requires a transducer, a device that takes power from one domain (for instance, the mechanical domain) and converts it to another domain (for instance, the electrical domain). In this chapter, we discuss the two most suitable transducers for micro- and nanoscale harvesting—piezoelectric and electrostatic transducers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In engineering sciences, the systems from Fig. 3.1 are called resonators. In a certain sense, the term resonator is more accurate since it highlights that these systems are passive. Indeed, as we shall see later, sustained oscillations can exist in them only if an external force/driving is applied. In physics and mathematics, such systems and equations describing them are generally called oscillators. To specify, one may say that Fig. 3.1 shows a passive oscillator in contrast to a self-oscillator such as the Van der Pol oscillator [3]. The latter is a system with negative nonlinear damping that can display an oscillatory process without any external forcing. However, this is only a matter of naming, and in this book we will often refer to all oscillator-like systems as simply oscillators.

References

  1. Adams, S. G., Bertsch, F. M., Shaw, K. A., & MacDonald, N. C. (1998). Independent tuning of linear and nonlinear stiffness coefficients [actuators]. Journal of Microelectromechanical Systems, 7(2), 172–180.

    Article  Google Scholar 

  2. Amri, M., Basset, P., Cottone, F., Galayko, D., Najar, F., & Bourouina, T. (2011). Novel nonlinear spring design for wideband vibration energy harvesters. In Proceedings of the power MEMS (pp. 15–18).

    Google Scholar 

  3. Andronov, A. A. (1987). Theory of oscillators (Vol. 4). Courier Dover Publications.

    Google Scholar 

  4. Beeby, S., Torah, R., Tudor, M., Glynne-Jones, P., O’Donnell, T., Saha, C., et al. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17, 1257.

    Article  Google Scholar 

  5. Beeby, S. P., Tudor, M. J., & White, N. M. (2009). Energy harvesting vibration sources for microsystems applications. Measurement Science and Technology, 17, R175–R195.

    Article  Google Scholar 

  6. Benzi, R., Sutera, A., & Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A: Mathematical and General, 14(11), L453.

    Article  MathSciNet  Google Scholar 

  7. DeMartini, B. E., Rhoads, J. F., Turner, K. L., Shaw, S. W., & Moehlis, J. (2007). Linear and nonlinear tuning of parametrically excited mems oscillators. Journal of Microelectromechanical Systems, 16(2), 310–318.

    Article  Google Scholar 

  8. Duffing, G. (1918). Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. 41–42. R, Vieweg and Sohn.

    Google Scholar 

  9. Galchev, T., Aktakka, E. E., & Najafi, K. (2012). A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. Journal of Microelectromechanical Systems, 21(6), 1311–1320.

    Article  Google Scholar 

  10. Gammaitoni, L., Neri, I., & Vocca, H. (2009). Nonlinear oscillators for vibration energy harvesting. Applied Physics Letters, 94, 164,102.

    Google Scholar 

  11. Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Vol. 42). New York: Springer.

    Google Scholar 

  12. Hairer, E., Nørsett, S. P., & Wanner, G. (1991). Solving ordinary differential equations (Vol. 2). Springer.

    Google Scholar 

  13. Holmes, P., & Rand, D. (1976). The bifurcations of Duffing’s equation: An application of catastrophe theory. Journal of Sound and Vibration, 44(2), 237–253.

    Article  MATH  Google Scholar 

  14. Kaajakari, V. (2009). Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Las Vegas, NV: Small Gear Publishing.

    Google Scholar 

  15. Kuznetsov, A. P., Kuznetsov, S. P., & Ryskin, N. (2002). Nonlinear oscillations. Moscow: Fizmatlit.

    MATH  Google Scholar 

  16. Li, H., Preidikman, S., Balachandran, B., & Mote, C, Jr. (2006). Nonlinear free and forced oscillations of piezoelectric microresonators. Journal of Micromechanics and Microengineering, 16(2), 356.

    Article  Google Scholar 

  17. Meninger, S., Mur-Miranda, J., Amirtharajah, R., Chandrakasan, A., & Lang, J. (2001). Vibration-to-electric energy conversion. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(1), 64–76.

    Google Scholar 

  18. Mitcheson, P., Yeatman, E., Rao, G., Holmes, A., & Green, T. (2008). Energy harvesting from human and machine motion for wireless electronic devices. Proceedings of the IEEE, 96(9), 1457–1486.

    Article  Google Scholar 

  19. Nayfeh, A. (1993). Introduction to perturbation techniques. Wiley.

    Google Scholar 

  20. Nayfeh, A. H., & Balachandran, B. (2008). Applied nonlinear dynamics (Vol. 24). Wiley-VCH.

    Google Scholar 

  21. Nayfeh, A. H., & Mook, D. T. (2008). Nonlinear oscillations. Wiley.

    Google Scholar 

  22. Nayfeh, A. H., Younis, M. I., & Abdel-Rahman, E. M. (2005). Reduced-order models for mems applications. Nonlinear dynamics, 41(1–3), 211–236.

    Article  MathSciNet  MATH  Google Scholar 

  23. Nguyen, D., Halvorsen, E., Jensen, G., & Vogl, A. (2010). Fabrication and characterization of a wideband mems energy harvester utilizing nonlinear springs. Journal of Micromechanics and Microengineering, 20(12), 125,009.

    Google Scholar 

  24. Nguyen, S. D., & Halvorsen, E. (2011). Nonlinear springs for bandwidth-tolerant vibration energy harvesting. Journal of Microelectromechanical Systems, 20, 1225–1227.

    Article  Google Scholar 

  25. Nicolis, C. (1981). Solar variability and stochastic effects on climate. In Physics of Solar Variations (pp. 473–478). Springer.

    Google Scholar 

  26. Nicolis, C. (1982). Stochastic aspects of climatic transitions response to a periodic forcing. Tellus, 34(1), 1–9.

    Article  MathSciNet  Google Scholar 

  27. Pelesko, J. A., & Bernstein, D. H. (2002). Modeling MEMS and NEMS. CRC Press.

    Google Scholar 

  28. Rabinovich, M. I. (1989). Oscillations and waves: In linear and nonlinear systems (Vol. 50). Taylor and Francis.

    Google Scholar 

  29. Riley, K., Hobson, P., & Bence, S. (2006). Mathematical methods for physics and engineering: a comprehensive guide. Cambridge University Press. http://books.google.com.ua/books?id=Mq1nlEKhNcsC.

  30. Roundy, S., Wright, P., & Pister, K. (2002) Micro-electrostatic vibration-to-electricity converters. In Proceedings of 2002 ASME international mechanical engineering congress.

    Google Scholar 

  31. Senturia, S. D. (2001). Microsystem design (Vol. 3). Boston: Kluwer Academic Publishers.

    Google Scholar 

  32. Tang, K. T. (2007). Mathematical methods for engineers and scientists. Springer.

    Google Scholar 

  33. Tang, L., Yang, Y., & Soh, C. K. (2010). Toward broadband vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 21(18), 1867–1897.

    Article  Google Scholar 

  34. Taylor, J. R. (2005). Classical mechanics. University Science Books.

    Google Scholar 

  35. Trubetskov, D. I., & Rozhnev, A. G. (2001). Linear oscillations and waves. Moscow: Fizmatlit.

    Google Scholar 

  36. Williams, C., & Yates, R. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators A, 52, 8–11.

    Article  Google Scholar 

  37. Zhu, D., Tudor, M. J., & Beeby, S. P. (2010). Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Measurements and Science Technology, 21, 022,001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Blokhina .

Editor information

Editors and Affiliations

Appendices

Appendix I

In this appendix, we calculate the fundamental harmonic of the force generated by a nonlinear spring submitted to sinusoidal deformation. Let the spring be characterised by the relationship between the force \(F_{spring}\) and the deformation x

$$\begin{aligned} F_{spring}=F(x), \end{aligned}$$
(3.115)

and x is given by

$$\begin{aligned} x=X\sin (\omega t). \end{aligned}$$
(3.116)

The complex amplitude of the fundamental harmonic of the force \(\dot{F}_{spring}\) is given by

$$\begin{aligned} \dot{F}_{spring}=\frac{\omega }{\pi }\int _{0}^{T}f[X\sin (\omega t)]e^{-j\omega t}\mathrm dt \end{aligned}$$
(3.117)

(Do not confuse \(\dot{F}_{spring}\) used in this section with the notation for the derivative.)

We first calculate the real part of this integral

$$\begin{aligned} Re(\dot{F}_{spring})=\frac{\omega }{\pi }\int _{0}^{T}f[X\sin (\omega t)]\cos (\omega t)\mathrm dt=\nonumber \\ \frac{1}{\pi }\int _{0}^{T}f[X\sin (\omega t)]\mathrm d\sin (\omega t)= \frac{1}{\pi }\oint _{y}f[Xy]\mathrm dy \end{aligned}$$
(3.118)

Since the force of a spring is potential, this integral on a closed path is zero, so that

$$\begin{aligned} Re(\dot{F}_{spring})=0. \end{aligned}$$
(3.119)

Now we calculate the imaginary part

$$\begin{aligned} Im(\dot{F}_{spring})=-\frac{\omega }{\pi }\int _{0}^{T}f[X\sin (\omega t)]\sin (\omega t)\mathrm dt=\nonumber \\ \frac{1}{\pi }\int _{0}^{T}f[X\sin (\omega t)]\mathrm d\cos (\omega t)=\nonumber \\ \frac{1}{\pi }\int _{1}^{-1}f[X\sqrt{1-y^2}]\mathrm dy+\frac{1}{\pi }\int _{-1}^{1}f[-X\sqrt{1-y^2}]\mathrm dy \end{aligned}$$
(3.120)

For the complex amplitude of the spring force, we get

$$\begin{aligned} \dot{F}_{spring}=j\left[ \frac{1}{\pi }\int _{1}^{-1}f[X\sqrt{1-y^2}]\mathrm dy+\frac{1}{\pi }\int _{-1}^{1}f[-X\sqrt{1-y^2}]\mathrm dy\right] \end{aligned}$$
(3.121)

and as a consequence, the force in the time domain is given by

$$\begin{aligned} \dot{F}_{spring}=\left[ \frac{1}{\pi }\int _{1}^{-1}f[X\sqrt{1-y^2}]\mathrm dy+\frac{1}{\pi }\int _{-1}^{1}f[-X\sqrt{1-y^2}]\mathrm dy\right] \sin (\omega t). \end{aligned}$$
(3.122)

Appendix II

In this appendix, we calculate the fundamental harmonic of the force generated by a nonlinear damper submitted to sinusoidal deformation. Let the damper characterised by the relationship between the force \(F_{damper}\) and the deformation x

$$\begin{aligned} F_{damper}=F(\dot{x}), \end{aligned}$$
(3.123)

and x is given by

$$\begin{aligned} x=X\sin (\omega t). \end{aligned}$$
(3.124)

The complex amplitude of the fundamental harmonic of the force \(F_{damper}\) is given by

$$\begin{aligned} \dot{F}_{damper}=\frac{\omega }{\pi }\int _{0}^{T}f[X\omega \cos (\omega t)]e^{-j\omega t}\mathrm dt \end{aligned}$$
(3.125)

We first calculate the real part of this integral

$$\begin{aligned} Re(\dot{F}_{damper})=\frac{\omega }{\pi }\int _{0}^{T}f[X\omega \cos (\omega t)]\cos (\omega t)\mathrm dt=\nonumber \\ \frac{1}{\pi }\int _{0}^{T}f[X\omega \cos (\omega t)]\mathrm d\sin (\omega t)=\nonumber \\ \frac{1}{\pi }\int _{T/4}^{5T/4}f[X\omega \cos (\omega t)]\mathrm d\sin (\omega t)=\nonumber \\ \frac{1}{\pi }\int _{1}^{-1}f[X\omega \sqrt{1-y^2}]\mathrm dy+\frac{1}{\pi }\int _{-1}^{1}f[-X\omega \sqrt{1-y^2}]\mathrm dy \end{aligned}$$
(3.126)

Now we calculate the imaginary part

$$\begin{aligned} Im(\dot{F}_{damper})=-\frac{\omega }{\pi }\int _{0}^{T}f[X\omega \cos (\omega t)]\sin (\omega t)\mathrm dt=\nonumber \\ \frac{1}{\pi }\int _{0}^{T}f[X\omega \cos (\omega t)]\mathrm d\cos (\omega t)=\nonumber \\ \frac{1}{\pi }\oint _{y}f[X\omega y]\mathrm dy \end{aligned}$$
(3.127)

According to the Green-Riemann theorem [29], this integral is zero.

The expression of the reaction force of a damper is

$$\begin{aligned} \dot{F}_{damper}=\left[ \frac{1}{\pi }\int _{1}^{-1}f[X\omega \sqrt{1-y^2}]\mathrm dy+\frac{1}{\pi }\int _{-1}^{1}f[-X\omega \sqrt{1-y^2}]\mathrm dy\right] \cos (\omega t). \end{aligned}$$
(3.128)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blokhina, E., Galayko, D. (2016). Oscillators for Energy Harvesting. In: Blokhina, E., El Aroudi, A., Alarcon, E., Galayko, D. (eds) Nonlinearity in Energy Harvesting Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-20355-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20355-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20354-6

  • Online ISBN: 978-3-319-20355-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics