Skip to main content

The Detection of Gravitational Waves

  • Chapter
  • First Online:
Gravity: Where Do We Stand?

Abstract

The detection of gravitational waves is challenging researchers since half a century. The relative precision required, \(10^{-21}\), is difficult to imagine, this is \(10^{-5}\) the diameter of a proton over several kilometres, using masses of tens of kilograms, or picometres over millions of kilometres. A theoretical description of gravitational radiation and its effects on matter, all consequence of the general theory of relativity, is given. Then the astrophysical phenomena that are candidates of gravitational wave emission are discussed, considering also amplitudes and rates. The binary neutron star system PSR1913\(+\)16, which provided the first evidence for energy loss by gravitational radiation in 1975, is briefly discussed. Then comes a description of the experimental developments, starting with ground-based interferometers, their working principles and their most important sources of noise. The earth-wide network that is being built describes how these instruments will be used in the observation era. Several other detection techniques, such as space interferometry, pulsar timing arrays and resonant detectors, covering different bands of the gravitational wave frequency spectrum complete these lectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein A. Die grundlage der allgemeinen relativitätstheorie. Ann Phys. 1916;49:769–822.

    Article  MATH  Google Scholar 

  2. Misner CW, Thorne KS, Wheeler JS. Gravitation. San Francisco:WH Freeman; 1973.

    Google Scholar 

  3. Schutz BF. A first course in general relativity. 2nd edn. Cambridge: Cambridge University Press; 2009.

    Book  MATH  Google Scholar 

  4. Will CM. Theory and experiment in gravitational physics. Revised edn. Cambridge: Cambridge University Press; 1993.

    Book  MATH  Google Scholar 

  5. Einstein A. Näherungsweise integration der feldgleichungen der gravitation. Preuss. Akad. Wiss. Berlin Sitzber: p. 688. 1916.

    Google Scholar 

  6. Peters PC, Mathews J. Gravitational radiation from point masses in a Keplerian orbit. Phys Rev. 1963;131:435–40. doi:10.1103/PhysRev.131.435.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Lense J, Thirring H. Uber den einfluss der eigenrotation der zentralkorper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. Phys Z. 1918;19:156–63. Translation in Gen Relativ Gravit 1984;16:727–41.

    Google Scholar 

  8. Peron R. Fundamental Physics with the LAGEOS Satellites. In: Peron R, Gorini V, Moschella U, editors. Gravity: where do we stand? Berlin: Springer; 2016, p. 167 (Chap.4 this volume).

    Google Scholar 

  9. Ciufolini I, Pavlis EC. A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature. 2004;431(7011):958–60. doi:dx.doi.org/10.1038/nature03007.

    Article  ADS  Google Scholar 

  10. Everitt CWF, DeBra DB, Parkinson BW, Turneaure JP, Conklin JW, Heifetz MI, Keiser GM, Silbergleit AS, Holmes T, Kolodziejczak J, Al-Meshari M, Mester JC, Muhlfelder B, Solomonik VG, Stahl K, Worden PW, Bencze W, Buchman S, Clarke B, Al-Jadaan A, Al-Jibreen H, Li J, Lipa JA, Lockhart JM, Al-Suwaidan B, Taber M, Wang S. Gravity probe b: Final results of a space experiment to test general relativity. Phys Rev Lett. 2011;106:221101. doi:10.1103/PhysRevLett.106.221101.

    Article  ADS  Google Scholar 

  11. Abadie J, Abbott BP, Abbott R, Abernathy M, Accadia T, Acerneseac F, Adams C, Adhikari R, Ajith P, Allen B, Allen G, Ceron EA, Amin RS, Anderson SB, Anderson WG, Antonuccia F, Aoudiaa S, Arain MA, Araya M, Aronsson M, Arun KG, Aso Y, Aston S, Astonea P, Atkinson DE, Aufmuth P, Aulbert C, Babak S, Baker P, Ballardin G, Ballmer S, Barker D, Barnum S, Baroneac F, Barr B, Barriga P, Barsotti L, Barsuglia M, Barton MA, Bartos I, Bassiri R, Bastarrika M, Bauchrowitz J, Bauera TS, Behnke B, Beker MG, Benacquista M, Bertolini A, Betzwieser J, Beveridge N, Beyersdorf PT, Bigottaab S, Bilenko IA, Billingsley G, Birch J, Birindellia S, Biswas R, Bitossi M, Bizouard MA, Black E, Blackburn JK, Blackburn L, Blair D, Bland B, Bloma M, Blomberg A, Boccara C, Bock O, Bodiya TP, Bondarescu R, Bondu F, Bonelli L, Bork R, Born M, Bose S, Bosi L, Boyle M, Braccini S, Bradaschia C, Brady PR, Braginsky VB, Brau JE, Breyer J, Bridges DO, Brillet A, Brinkmann M, Brisson V, Britzger M, Brooks AF, Brown DA, Budzynski R, Bulik T, Bulten HJ, Buonanno A, Burguet-Castell J, Burmeister O, Buskulic D, Byer RL, Cadonati L, Cagnoli G, Calloni E, Camp JB, Campagna E, Campsie P, Cannizzo J, Cannon KC, Canuel B, Cao J, Capano C, Carbognani F, Caride S, Caudill S, Cavagli M, Cavalier F, Cavalieri R, Cella G, Cepeda C, Cesarini E, Chalermsongsak T, Chalkley E, Charlton P, Mottin EC, Chelkowski S, Chen Y, Chincarini A, Christensen N, Chua SSY, Chung CTY, Clark D, Clark J, Clayton JH, Cleva F, Coccia E, Colacino CN, Colas J, Colla A, Colombini M, Conte R, Cook D, Corbitt TR, Corda C, Cornish N, Corsi A, Costa CA, Coulon JP, Coward D, Coyne DC, Creighton JDE, Creighton TD, Cruise AM, Culter RM, Cumming A, Cunningham L, Cuoco E, Dahl K, Danilishin SL, Dannenberg R, D’Antonio S, Danzmann K, Dari A, Das K, Dattilo V, Daudert B, Davier M, Davies G, Davis A, Daw EJ, Day R, Dayanga T, De Rosa R, Debra D, Degallaix J, Del Prete M, Dergachev V, DeRosa R, DeSalvo R, Devanka P, Dhurandhar S, Di Fiore L, Di Lieto A, Di Palma I, Emilio MDP, Di Virgilio A, Diaz M, Dietz A, Donovan F, Dooley KL, Doomes EE, Dorsher S, Douglas ESD, Dragocd M, Drever RWP, Driggers JC, Dueck J, Dumas JC, Eberle T, Edgar M, Edwards M, Effler A, Ehrens P, Engel R, Etzel T, Evans M, Evans T, Fafone V, Fairhurst S, Fan Y, Farr BF, Fazi D, Fehrmann H, Feldbaum D, Ferrante I, Fidecaro F, Finn LS, Fiori I, Flaminio R, Flanigan M, Flasch K, Foley S, Forrest C, Forsi E, Fotopoulos N, Fournier JD, Franc J, Frasca S, Frasconi F, Frede M, Frei M, Frei Z, Freise A, Frey R, Fricke TT, Friedrich D, Fritschel P, Frolov VV, Fulda P, Fyffe M, Gammaitoni L, Garofoli JA, Garufiab F, Gemme G, Genin E, Gennai A, Gholami I, Ghosh S, Giaime JA, Giampanis S, Giardina KD, Giazotto A, Gill C, Goetz E, Goggin LM, Gonzalez G, Gorodetsky ML, Gossler S, Gouaty R, Graef C, Granata M, Grant A, Gras S, Gray C, Greenhalgh RJS, Gretarsson AM, Greveriea C, Grosso R, Grote H, Grunewald S, Guidi GM, Gustafson EK, Gustafson R, Hage B, Hall P, Hallam JM, Hammer D, Hammond G, Hanks J, Hanna C, Hanson J, Harms J, Harry GM, Harry IW, Harstad ED, Haughian K, Hayama K, Heefner J, Heitmann H, Hello P, Heng IS, Heptonstall A, Hewitson M, Hild S, Hirose E, Hoak D, Hodge KA, Holt K, Hosken DJ, Hough J, Howell E, Hoyland D, Huet D, Hughey B, Husa S, Huttner SH, Huynh-Dinh T, Ingram DR, Inta R, Isogai T, Ivanov A, Jaranowski P, Johnson WW, Jones DI, Jones G, Jones R, Ju L, Kalmus P, Kalogera V, Kandhasamy S, Kanner J, Katsavounidis E, Kawabe K, Kawamura S, Kawazoe F, Kells W, Keppel DG, Khalaidovski A, Khalili FY, Khazanov EA, Kim C, Kim H, King PJ, Kinzel DL, Kissel JS, Klimenko S, Kondrashov V, Kopparapu R, Koranda S, Kowalska I, Kozak D, Krause T, Kringel V, Krishnamurthy S, Krishnan B, Krolak A, Kuehn G, Kullman J, Kumar R, Kwee P, Landry M, Lang M, Lantz B, Lastzka N, Lazzarini A, Leaci P, Leong J, Leonor I, Leroy N, Letendre N, Li J, Li TGF, Lin H, Lindquist PE, Lockerbie NA, Lodhia D, Lorenzinia M, Lorietteb V, Lormand M, Losurdo G, Lu P, Luan J, Lubinski M, Lucianetti A, Lueck H, Lundgren A, Machenschalk B, MacInnis M, Mackowski JM, Mageswaran M, Mailand K, Majoranaa E, Mak C, Man N, Mandel. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical Quant Grav 2010;27(17):173001. doi:10.1088/0264-9381/27/17/173001.

    Google Scholar 

  12. Ott CD. Probing the core-collapse supernova mechanism with gravitational waves. Classical Quant Grav 2009;26(20):204015.

    Article  ADS  Google Scholar 

  13. Possenti A, Burgay M. The Role of binary pulsars in testing gravity theories In: Peron R, Gorini V, Moschella U, editors. Gravity: where do we stand? Berlin: Springer; 2016, p. 279 (Chap.8, this volume).

    Google Scholar 

  14. Smith TL, Pierpaoli E, Kamionkowski M. New cosmic microwave background constraint to primordial gravitational waves. Phys Rev Lett. 2006;97:021301. doi:10.1103/ PhysRevLett.97.021301.

    Article  ADS  Google Scholar 

  15. Riess AG, Macri L, Casertano S, Lampeitl H, Ferguson HC, Filippenko AV, Jha SW, Li W, Chornock R. A 3% solution: determination of the Hubble constant with the Hubble space telescope and wide field camera 3. Astrophys J. 2011;730(2):119.

    Article  ADS  Google Scholar 

  16. Allen B, Romano JD. Detecting a stochastic background of gravitational radiation: signal processing strategies and sensitivities. Phys Rev D. 1999;59:102001. doi:10.1103/PhysRevD.59.102001.

    Article  ADS  Google Scholar 

  17. Wex N. A timing formula for main-sequence star binary pulsars. MNRAS. 1998;298(1):67–77. doi:10.1046/j.1365-8711.1998.01570.x.

    Article  ADS  Google Scholar 

  18. Weisberg JM, Nice DJ, Taylor JH. Timing measurements of the relativistic binary pulsar psr b1913+16. Astrophys J. 2010;722(2):1030.

    Article  ADS  Google Scholar 

  19. Heasarc pulsar catalogue. http://heasarc.gsfc.nasa.gov/W3Browse/radio-catalog/pulsar.html.

  20. Papoulis A, Pillai SU. Probability, random variables and stochastic processes. New York: McGraw-Hill; 2001.

    Google Scholar 

  21. Pound RV. Electronic frequency stabilization of microwave oscillators. Rev Sci Instrum. 1946;17(11):490–505. doi:10.1063/1.1770414.

    Article  ADS  Google Scholar 

  22. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H. Laser phase and frequency stabilization using an optical resonator. Appl Phys B. 1983;31:97–105.

    Article  ADS  Google Scholar 

  23. Black ED. An introduction to Pound–Drever–Hall laser frequency stabilization. Am J Phys. 2001;69(1):79–87. doi:10.1119/1.1286663.

    Article  ADS  Google Scholar 

  24. Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R. Observation of squeezed light with 10-db quantum-noise reduction. Phys Rev Lett. 2008;100:033602. doi:10.1103/PhysRevLett.100.033602.

    Article  ADS  Google Scholar 

  25. Abadie J et al. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nat Phys. 2011;7:962–5. doi:10.1038/nphys2083.

    Article  Google Scholar 

  26. Acernese F et al. Measurements of superattenuator seismic isolation by virgo interferometer. Astropart Phys. 2010;33:182–9.

    Article  ADS  Google Scholar 

  27. Fairhurst S. Source localization with an advanced gravitational wave detector network. Classical Quant Grav 2011;28(10):105021.

    Article  ADS  Google Scholar 

  28. Amaro-Seoane P, e.a. The gravitational universe. 2013. arXiv:1305.5720 [astro-ph.CO].

    Google Scholar 

  29. van Haasteren R, Levin Y, Janssen GH, Lazaridis K, Kramer M, Stappers BW, Desvignes G, Purver MB, Lyne AG, Ferdman RD, Jessner A, Cognard I, Theureau G, D’Amico N, Possenti A, Burgay M, Corongiu A, Hessels JWT, Smits R, Verbiest JPW. Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data. MNRAS. 2011;414:3117–28. doi:10.1111/j.1365-2966.2011.18613.x.

    Google Scholar 

  30. Demorest, PB, Ferdman RD, Gonzalez ME, Nice D, Ransom S, Stairs IH, Arzoumanian Z, Brazier A, Burke-Spolaor S, Chamberlin SJ, Cordes JM, Ellis J, Finn LS, Freire P, Giampanis S, Jenet F, Kaspi VM, Lazio J, Lommen AN, McLaughlin M, Palliyaguru N, Perrodin D, Shannon RM, Siemens X, Stinebring D, Swiggum J, Zhu WW. Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves. Astrophys J. 2013;762(2):94.

    Article  ADS  Google Scholar 

  31. Manchester RN, Hobbs G, Bailes M, Coles WA, van Straten W, Keith MJ, Shannon RM, Bhat NDR, Brown A, Burke-Spolaor SG, Champion DJ, Chaudhary A, Edwards RT, Hampson G, Hotan AW, Jameson A, Jenet FA, Kesteven MJ, Khoo J, Kocz J, Maciesiak K, Oslowski S, Ravi V, Reynolds JR, Sarkissian JM, Verbiest JPW, Wen ZL, Wilson WE, Yardley D, Yan WM, You XP. The Parkes pulsar timing array project. PASA - Publications of the Astronomical Society of Australia. 2013;30. doi:10.1017/pasa.2012.017.

    Google Scholar 

  32. BICEP2 Collaboration. Bicep2 ii: Experiment and three-year data set. 2014. arXiv:1403.4302 [astro-ph.CO].

    Google Scholar 

  33. Lamarre JM, Puget JL, Bouchet F, Ade PAR, Benoit A, Bernard JP, Bock J, De Bernardis P, Charra J, Couchot F, Delabrouille J, Efstathiou G, Giard M, Guyot G, Lange A, Maffei B, Murphy A, Pajot F, Piat M, Ristorcelli I, Santos D, Sudiwala R, Sygnet JF, Torre JP, Yurchenko V, Yvon D. The Planck High Frequency Instrument, a third generation CMB experiment, and a full sky submillimeter survey. New Astro Rev. 2003;47:1017–24. doi:10.1016/j.newar.2003.09.006.

    Google Scholar 

  34. Ade PAR, Aikin RW, Barkats D, Benton SJ, Bischoff CA, Bock JJ, Brevik JA, Buder I, Bullock E, Dowell CD, Duband L, Filippini JP, Fliescher S, Golwala SR, Halpern M, Hasselfield M, Hildebrandt SR, Hilton GC, Hristov VV, Irwin KD, Karkare KS, Kaufman JP, Keating BG, Kernasovskiy SA, Kovac JM, Kuo CL, Leitch EM, Lueker M, Mason P, Netterfield CB, Nguyen HT, O’Brient R, Ogburn RW, Orlando A, Pryke C, Reintsema CD, Richter S, Schwarz R, Sheehy CD, Staniszewski ZK, Sudiwala RV, Teply GP, Tolan JE, Turner AD, Vieregg AG, Wong CL, Yoon KW. Detection of b-mode polarization at degree angular scales by bicep2. Phys Rev Lett. 2014;112:241101. doi:10.1103/PhysRevLett.112.241101.

    Article  ADS  Google Scholar 

  35. McHugh MP, Johnson WW, Hamilton WO, Hanson J, Heng IS, McNeese D, Miller P, Nettles D, Weaver J, Zhang P. Calibration of the allegro resonant detector. Classical Quant Grav 2005;22(18):S965.

    Article  ADS  Google Scholar 

  36. Mauceli E, Geng ZK, Hamilton WO, Johnson WW, Merkowitz S, Morse A, Price B, Solomonson N. The allegro gravitational wave detector: data acquisition and analysis. Phys Rev D. 1996;54:1264–75. doi:10.1103/PhysRevD.54.1264.

    Article  ADS  Google Scholar 

  37. Vinante A the AURIGA Collaboration. Present performance and future upgrades of the auriga capacitive readout. Classical Quant Grav. 2006;23(8):S103.

    Article  ADS  Google Scholar 

  38. Astone P, Ballantini R, Babusci D, Bassan M, Carelli P, Cavallari G, Cavanna F, Chincarini A, Coccia E, Cosmelli C, D’Antonio S, Dubath F, Fafone V, Foffa S, Gemme G, Giordano G, Maggiore M, Marini A, Minenkov Y, Modena I, Modestino G, Moleti A, Murtas GP, Pai A, Palamara O, Pallottino GV, Parodi R, Mortari GP, Pizzella G, Quintieri L, Rocchi A, Ronga F, Sturani R, Terenzi R, Torrioli G, Vaccarone R, Vandoni G, Visco M. Status report on the explorer and nautilus detectors and the present science run. Classical Quant Grav 2006;23(8):S57.

    Article  ADS  Google Scholar 

  39. Blair DG, Ivanov EN, Tobar ME, Turner PJ, van Kann F, Heng IS. High sensitivity gravitational wave antenna with parametric transducer readout. Phys Rev Lett. 1995;74:1908–11. doi:10.1103/PhysRevLett.74.1908.

    Google Scholar 

  40. Astone P, Babusci D, Baggio L, Bassan M, Blair DG, Bonaldi M, Bonifazi P, Busby D, Carelli P, Cerdonio M, Coccia E, Conti L, Cosmelli C, D’Antonio S, Fafone V, Falferi P, Fortini P, Frasca S, Giordano G, Hamilton WO, Heng IS, Ivanov EN, Johnson WW, Marini A, Mauceli E, McHugh MP, Mezzena R, Minenkov Y, Modena I, Modestino G, Moleti A, Ortolan A, Pallottino GV, Pizzella G, Prodi GA, Quintieri L, Rocchi A, Rocco E, Ronga F, Salemi F, Santostasi G, Taffarello L, Terenzi R, Tobar ME, Torrioli G, Vedovato G, Vinante A, Visco M, Vitale S, Zendri JP. Methods and results of the IGEC search for burst gravitational waves in the years 1997–2000. Phys Rev D. 2003;68:022001. doi:10.1103/PhysRevD.68.022001.

    Article  ADS  Google Scholar 

  41. Gottardi L, de Waard A, Usenko O, Frossati G, Podt M, Flokstra J, Bassan M, Fafone V, Minenkov Y, Rocchi A. Sensitivity of the spherical gravitational wave detector minigrail operating at 5 k. Phys Rev D. 2007;76:102005. doi:10.1103/PhysRevD.76.102005.

    Google Scholar 

  42. Aguiar OD, Andrade LA, Barroso JJ, Castro PJ, Costa CA, de Souza ST, de Waard A, Fauth AC, Frajuca C, Frossati G, Furtado SR, Gratens X, Maffei TMA, Magales NS Jr, RMM Jr, NFO, Pimentel GL, Remy MA, Tobar ME, Abdalla E, Alves MES, Bessada DFA, Bortoli FS, Brando CSS, Costa KMF, de Araujo HAB, de Araujo JCN, de Gouveia Dal Pino EM, de Paula W, de Rey Neto EC, Evangelista EFD, Lenzi CH, Marranghello GF, Miranda OD, Oliveira SR, Opher R, Pereira ES, Stellati C, Weber J. The Schenberg spherical gravitational wave detector: the first commissioning runs. Classical Quant Grav 2008;25(11):114042.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fidecaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Braccini, S., Fidecaro, F. (2016). The Detection of Gravitational Waves. In: Peron, R., Colpi, M., Gorini, V., Moschella, U. (eds) Gravity: Where Do We Stand?. Springer, Cham. https://doi.org/10.1007/978-3-319-20224-2_7

Download citation

Publish with us

Policies and ethics