Skip to main content

Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil

  • Chapter
Electrokinetics Across Disciplines and Continents

Abstract

Polychlorinated biphenyls (PCB) are persistent organic pollutants (POP) that accumulate in soils and sediments. Currently, there is a need to develop new, sustainable, and cost-effective solutions for the remediation of PCB-contaminated soils. Zero valent iron nanoparticles (nZVI) were considered promising for the remediation of PCB-contaminated soils and groundwater. However, critical issues related to their limited mobility remain unsolved. Direct current can be used to enhance the nanoparticles transport, based on the same principles of electrokinetic remediation (EKR). This work is a literature survey integrating the experimental work made for the electroremediation of PCB-contaminated soil, coupling electrokinetics with nZVI, starting from the tests with stabilized bimetallic Fe/Pd nanoparticles and including the comparison between the traditional three-compartment EK setup and the more recent two-compartment electrodialytic (ED) setup. The experiments with EK and Fe/Pd nanoparticles were not encouraging for scale-up of the process, with only 20 % PCB removal. The electrodialytic setup showed best removals (>75 % in real contaminated soils) and showed several advantages, such as a higher PCB dechlorination in contaminated soil, in a shorter time, with lower nZVI consumption, a uniform distribution of nZVI in soil, and with the use of half of the voltage gradient when compared with the traditional EK setup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Article  CAS  Google Scholar 

  • Alder AC, Haggblom MM, Oppenheimer SR, Young LY (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ Sci Technol 27:530–538

    Article  CAS  Google Scholar 

  • ATSDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs). Agency for Toxic Substances and Disease Registry/U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • ATSDR (2011) Toxicological profiles. Agency for Toxic Substances and Disease Registry/U.S. Department of Health and Human Services. http://www.atsdr.cdc.gov/toxprofiles/index.asp. Accessed 13 Jul 2011

    Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Breivik K, Sweetman A, Pacyna JM, Jones KC (2002a) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 1. Global production and consumption. Sci Total Environ 290:181–198

    Article  CAS  Google Scholar 

  • Breivik K, Sweetman A, Pacyna JM, Jones KC (2002b) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 2. Emissions Total Sci Environ 290:199–224

    Article  CAS  Google Scholar 

  • Breivik K, Sweetman A, Pacyna JM, Jones KC (2007) Towards a global historical emission inventory for selected PCB congeners—a mass balance approach 3. An update. Sci Total Environ 377:296–307

    Article  CAS  Google Scholar 

  • CDC (2009) Fourth National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services/Centers for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Chen X, Yao X, Yu C, Su X, Shen C, Chen C, Huang R, Xu X (2014) Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles. Environ Sci Pollut Res 27:1–10. doi:10.1007/s11356-013-2089-8

    Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125. doi:10.1016/j.jhazmat.2011.11.073

    Article  Google Scholar 

  • Diamond ML, Melymuk L, Csiszar SA, Robson M (2010) Estimation of PCB stocks, emissions, and urban fate: will our policies reduce concentrations and exposure? Environ Sci Technol 44:2777–2783

    Article  CAS  Google Scholar 

  • Diaz-Ferrero J, Rodriguez-Larena MC, Comellas L, Jimhnez B (1997) Bioanalytical methods applied to endocrine disrupting polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. A review trends. Anal Chem 16(10):563–573

    CAS  Google Scholar 

  • Donaldson SG, Oostdam JV, Tikhonov C, Feeley M, Armstrong B, Ayotte P, Boucher O, Bowers W, Chan L, Dallaire F, Dallaire R, Dewailly É, Edwards J, Egeland GM, Fontaine J, Furgal C, Leech T, Loring E, Muckle G, Nancarrow T, Pereg D, Plusquellec P, Potyrala M, Receveur O, Sheare RG (2010) Environmental contaminants and human health in the Canadian Arctic. Sci Total Environ 408:5165–5234

    Article  CAS  Google Scholar 

  • Eisler R (1986) Planar PCB hazards to fish, wildlife, and invertebrates: a synoptic review. Patuxent Wildlife Research Center. U.S., Fish and Wildlife Service, Laurel

    Google Scholar 

  • Eisler R, Belisle AA (1996) Planar PCB hazards to fish, wildlife, and invertebrates: a synoptic review. Patuxent Wildlife Research Center. U.S., National Biological Service, Laurel

    Google Scholar 

  • Erickson MD, Kaley RG (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res 18:135–151

    Article  CAS  Google Scholar 

  • Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D (2013) Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nano Pd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol 114:64–72, http://dx.doi.org/10.1016/j.seppur.2013.04.030

    Article  CAS  Google Scholar 

  • Fan G, Cang L, Fang G, Zhou D (2014) Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Sep Purif Technol 123:106–113, http://dx.doi.org/10.1016/j.seppur.2013.12.035

    Article  CAS  Google Scholar 

  • Faroon OM, Keith LS, Smith- C, Simon, Rosa CTD (2003) Polychlorinated biphenyls: human health aspects. In: World Health Organization. Report published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals, Geneva, Switzerland

    Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105(5):433–449

    Article  CAS  Google Scholar 

  • Gomes HI (2014) Coupling electrokinetics and iron nanoparticles for the remediation of contaminated soils. Ph.D. Dissertation, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Portugal

    Google Scholar 

  • Gomes H, Dias-Ferreira C, Ribeiro AB, Loch G, Ottosen LM (2011) A new approach to soil remediation: coupling nanotechnology with electrically induced particle transport (Electrokinetics). In: Castro F, Vilarinho C, Carvalho J (eds) Book of proceedings of the 1st international conference WASTES: solutions, Treatments and opportunities. CVR—Centro para a valorização de Resíduos, Guimarães, Portugal, pp 732–737. ISBN 978-989-97429-1-8

    Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2012) Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere 87(10):1077–1090. doi:10.1016/j.chemosphere.2012.02.037

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013a) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260, http://dx.doi.org/10.1016/j.scitotenv.2012.11.098

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2013b) Enhanced transport and transformation of zerovalent nanoiron in clay using direct electric current. Water Air Soil Poll 224(12):1–12. doi:10.1007/s11270-013-1710-2

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014a) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interf Sci 433:189–195, http://dx.doi.org/10.1016/j.jcis.2014.07.022

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB, Pamukcu S (2014b) Influence of electrolyte and voltage on the direct current enhanced transport of iron nanoparticles in clay. Chemosphere 99:171–179, http://dx.doi.org/10.1016/j.chemosphere.2013.10.065

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2015) Treatment of a suspension of PCB contaminated soil using iron nanoparticles and electric current. J Environ Manage 151:550–555, http://dx.doi.org/10.1016/j.jenvman.2015.01.015

    Article  CAS  Google Scholar 

  • Hansen HK, Rojo A (2007) Testing pulsed electric fields in electroremediation of copper mine tailings. Electrochim Acta 52(10):3399–3405, http://dx.doi.org/10.1016/j.electacta.2006.07.064

    Article  CAS  Google Scholar 

  • Hansen HK, Rojo A, Ottosen LM (2005) Electrodialytic remediation of copper mine tailings. J Hazard Mater 117(2–3):179–183, http://dx.doi.org/10.1016/j.jhazmat.2004.09.014

    Article  CAS  Google Scholar 

  • He F, Zhao D, Paul C (2010) Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Res 44:2360–2370

    Article  CAS  Google Scholar 

  • Holoubek I, Dušek L, Sáňka M, Hofman J, Čupr P, Jarkovský J, Zbíral J, Klánová J (2009) Soil burdens of persistent organic pollutants—their levels, fate and risk. Part I variation of concentration ranges according to different soil uses and locations. Environ Pollut 157(12):3207–3217, http://dx.doi.org/10.1016/j.envpol.2009.05.031

    Article  CAS  Google Scholar 

  • Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44(8):2822–2827. doi:10.1021/es902413k

    Article  CAS  Google Scholar 

  • Istrate I, Cocarta D, Neamtu S, Cirlioru T (2013) The treatment of PCB polluted soil—the approach based on the application of electrochemical treatment. Water Air Soil Pollut 224(4):1–14. doi:10.1007/s11270-013-1516-2

    Article  CAS  Google Scholar 

  • Jensen SF (2009) PCB in Soil. The contamination of PCB in selected locations around Roskilde and Copenhagen. Roskilde University, Denmark

    Google Scholar 

  • Jensen PE, Ottosen LM, Ferreira C (2007) Electrodialytic remediation of soil fines (<63 μm) in suspension—influence of current strength and L/S. Electrochim Acta 52(10):3412–3419, http://dx.doi.org/10.1016/j.electacta.2006.03.116

    Article  CAS  Google Scholar 

  • Jensen PE, Ferreira CMD, Hansen HK, Rype J-U, Ottosen LM, Villumsen A (2010) Electroremediation of air pollution control residues in a continuous reactor. J Appl Electrochem 40:1173–1181. doi:10.1007/s10800-010-0090-1

    Article  CAS  Google Scholar 

  • Jones EH, Reynolds DA, Wood AL, Thomas DG (2010) Use of electrophoresis for transporting nano-iron in porous media. Ground Water 49(2):172–183. doi:10.1111/j.1745-6584.2010.00718.x

    Article  Google Scholar 

  • Kas J, Burkhard J, Demnerová K, Kost’ál J, Macek T, Macková M, Pazlarová J (1997) Perspectives in biodegradation of alkanes and PCBs. Pure Appl Chem 69(11):2357–2369

    Article  CAS  Google Scholar 

  • Kirkelund GM, Ottosen LM, Villumsen A (2009) Electrodialytic remediation of harbour sediment in suspension—evaluation of effects induced by changes in stirring velocity and current density on heavy metal removal and pH. J Hazard Mater 169(1–3):685–690, http://dx.doi.org/10.1016/j.jhazmat.2009.03.149

    Article  CAS  Google Scholar 

  • Koblizkova M, Ruzicková P, Cupr P, Komprda J, Holoubek I, Klánová J (2009) Soil burdens of persistent organic pollutants: their levels, fate and risks. Part IV, quantification of volatilization fluxes of organochlorine pesticides and polychlorinated biphenyls from contaminated soil surfaces. Environ Sci Technol 43:3588–3595

    Article  CAS  Google Scholar 

  • Kocur CM, Chowdhury AI, Sakulchaicharoen N, Boparai HK, Weber KP, Sharma P, Krol MM, Austrins LM, Peace C, Sleep BE, O’Carroll DM (2014) Characterization of nZVI mobility in a field scale test. Environ Sci Technol 48(5):2862–2869. doi:10.1021/es4044209

    Article  CAS  Google Scholar 

  • Kohler M, Tremp J, Zennegg M, Seiler C, Minder-Kohler S, Beck M, Lienemann P, Wegmann L, Schmid P (2005) Joint sealants: an overlooked diffuse source of polychlorinated biphenyls in buildings. Environ Sci Technol 39:1967–1973

    Article  CAS  Google Scholar 

  • Lageman R, Pool W, Seffinga GA (1989) Electro-reclamation. Chem Ind 18:585–590

    Google Scholar 

  • Laumann S, Micić V, Lowry GV, Hofmann T (2013) Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environ Pollut 179:53–60, http://dx.doi.org/10.1016/j.envpol.2013.04.004

    Article  CAS  Google Scholar 

  • Lee H-H, Yang J-W (2000) A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. J Hazard Mater B 77:227–240

    Article  CAS  Google Scholar 

  • Li Y, Liang F, Zhu Y, Wang F (2013) Phytoremediation of a PCB-contaminated soil by alfalfa and tall fescue single and mixed plants cultivation. J Soil Sediment 13(5):925–931. doi:10.1007/s11368-012-0618-6

    Article  CAS  Google Scholar 

  • Lima AT, Ottosen LM, Heister K, Loch JPG (2012) Assessing PAH removal from clayey soil by means of electro-osmosis and electrodialysis. Sci Total Environ 435–436:1–6, http://dx.doi.org/10.1016/j.scitotenv.2012.07.010

    Article  Google Scholar 

  • Lowry G, Johnson K (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216

    Article  CAS  Google Scholar 

  • Maervoet J, Covaci A, Schepens P, Sandau CD, Letcher RJ (2003) A reassessment of the nomenclature of polychlorinated biphenyl (PCB) metabolites. Environ Health Perspect 112(3):291–294

    Article  Google Scholar 

  • Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    Article  CAS  Google Scholar 

  • Mikszewski A (2004) Emerging technologies for the in situ remediation of PCB-contaminated soils and sediments: bioremediation and nanoscale zero-valent iron. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. Office of Superfund Remediation and Technology Innovation Program, Washington, DC

    Google Scholar 

  • Nizzetto L, Macleod M, Borgå K, Cabrerizo A, Dachs J, Guardo AD, Ghirardello D, Hansen KM, Jarvis A, Lindroth A, Ludwig B, Monteith D, Perlinger JA, Scheringer M, Schwendenmann L, Semple KT, Wick LY, Zhang G, Jones KC (2010) Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ Sci Technol 44(17):6526–6531. doi:10.1021/es100178f

    Article  CAS  Google Scholar 

  • Nystroem GM, Pedersen AJ, Ottosen LM, Villumsen A (2006) The use of desorbing agents in electrodialytic remediation of harbour sediment. Sci Total Environ 357(1–3):25–37

    Article  CAS  Google Scholar 

  • Ockenden WA, Breivik K, Meijer SN, Steinnes E, Sweetman AJ, Jones KC (2003) The global re-cycling of persistent organic pollutants is strongly retarded by soils. Environ Pollut 121(1):75–80, http://dx.doi.org/10.1016/S0269-7491(02)00204-X

    Article  CAS  Google Scholar 

  • Ottosen LM, Hansen HK, Laursen S, Villumsen A (1997) Electrodialytic remediation of soil polluted with copper from wood preservation industry. Environ Sci Technol 31(6):1711–1715

    Article  CAS  Google Scholar 

  • Ottosen LM, Pedersen AJ, Ribeiro AB, Hansen HK (2005) Case study on the strategy and application of enhancement solutions to improve remediation of soils contaminated with Cu, Pb and Zn by means of electrodialysis. Eng Geol 77(3–4):317–329, http://dx.doi.org/10.1016/j.enggeo.2004.07.021

    Article  Google Scholar 

  • Ottosen LM, Lima AT, Pedersen AJ, Ribeiro AB (2006) Electrodialytic extraction of Cu, Pb and Cl from municipal solid waste incineration fly ash suspended in water. J Chem Technol Biotechnol 81(4):553–559. doi:10.1002/jctb.1424

    Article  CAS  Google Scholar 

  • Ottosen LM, Pedersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludge and bio-ashes by an electrodialytic method. Electrochim Acta 52(10):3420–3426, http://dx.doi.org/10.1016/j.electacta.2006.06.048

    Article  CAS  Google Scholar 

  • Ottosen LM, Jensen PE, Hansen HK, Ribeiro A, Allard B (2009) Electrodialytic remediation of soil slurry–removal of Cu, Cr, and As. Sep Sci Technol 44(10):2245–2268. doi:10.1080/01496390902979651

    Article  CAS  Google Scholar 

  • Ottosen L, Jensen P, Kirkelund G, Hansen H (2013a) Electrodialytic remediation of different heavy metal-polluted soils in suspension. Water Air Soil Pollut 224(12):1–10. doi:10.1007/s11270-013-1707-x

    Article  CAS  Google Scholar 

  • Ottosen LM, Jensen PE, Kirkelund GM, Ebbers B (2013b) Electrodialytic separation of heavy metals from particulate material. Patent application EPC 13183278:4–1352

    Google Scholar 

  • Pamukcu S, Wittle JK (1992) Electrokinetic removal of selected heavy metals from soil. Environ Progress 11:241–250

    Article  CAS  Google Scholar 

  • Pamukcu S, Hannum L, Wittle JK (2008) Delivery and activation of nano-iron by DC electric field. J Environ Sci Health A 43(8):934–944

    Article  CAS  Google Scholar 

  • Pazos M, Kirkelund GM, Ottosen LM (2010) Electrodialytic treatment for metal removal from sewage sludge ash from fluidized bed combustion. J Hazard Mater 176(1):1073–1078

    Article  CAS  Google Scholar 

  • Priha E, Hellman S, Sorvari J (2005) PCB contamination from polysulphide sealants in residential areas—exposure and risk assessment. Chemosphere 59(4):537–543. doi:10.1016/j.chemosphere.2005.01.010

    Article  CAS  Google Scholar 

  • Probstein RF, Hicks RE (1993) Removal of contaminants from soil by electric fields. Science 260:498–530

    Article  CAS  Google Scholar 

  • Ribeiro AB, Mateus EP, Ottosen LM, Bech-Nielsen G (2000) Electrodialytic removal of Cu, Cr and As from chromated copper arsenate-treated timber waste. Environ Sci Technol 34:784–788

    Article  CAS  Google Scholar 

  • Ritter L, Solomon KR, Forget J, Stemeroff M, O’Leary C (1997) Persistent organic pollutants. An Assessment Report on: DDT-Aldrin-Dieldrin-Endrin-Chlordane, Heptachlor-Hexachlorobenzene, Mirex-Toxaphene, Polychlorinated Biphenyls, Dioxins and Furans. The International Programme on Chemical Safety (IPCS) within the framework of the Inter-Organization Programme for the Sound Management of Chemicals (IOMC)

    Google Scholar 

  • Rodenburg LA, Guo J, Du S, Cavallo GJ (2010) Evidence for unique and ubiquitous environmental sources of 3,3′-Dichlorobiphenyl (PCB 11). Environ Sci Technol 44(8):2816–2821. doi:10.1021/es901155h

    Article  CAS  Google Scholar 

  • Rojo A, Hansen HK, Cubillos M (2012) Electrokinetic remediation using pulsed sinusoidal electric field. Electrochim Acta 86:124–129, http://dx.doi.org/10.1016/j.electacta.2012.04.070

    Article  CAS  Google Scholar 

  • Rosalinda G, Jordi D, Luca N, Rainer L, Kevin CJ (2013) Atmospheric transport, cycling and dynamics of polychlorinated biphenyls (PCBs) from source regions to remote oceanic areas. In: Occurrence, fate and impact of atmospheric pollutants on environmental and human health, vol 1149. ACS Symposium Series, vol 1149. American Chemical Society, pp 3–18. doi:10.1021/bk-2013-1149.ch001

    Google Scholar 

  • Saichek RE, Reddy KR (2003a) Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere 21:273–287

    Article  Google Scholar 

  • Saichek RE, Reddy KR (2003b) Effects of system variables on surfactant enhanced electrokinetic removal of polycyclic aromatic hydrocarbons from clayey soils. Environ Technol 24(4):503–515

    Article  CAS  Google Scholar 

  • Schmidt C (2010) How PCBs are like grasshoppers. Environ Sci Technol 44(8):2752

    Article  CAS  Google Scholar 

  • Sun TR (2013) Effect of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Ph.D. Dissertation. Technical University of Denmark, Denmark

    Google Scholar 

  • Sun TR, Ottosen LM (2012) Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. Electrochim Acta 86:28–35, http://dx.doi.org/10.1016/j.electacta.2012.04.033

    Article  CAS  Google Scholar 

  • Sun TR, Ottosen LM, Jensen PE, Kirkelund GM (2012) Electrodialytic remediation of suspended soil—comparison of two different soil fractions. J Hazard Mater 203–204:229–235, http://dx.doi.org/10.1016/j.jhazmat.2011.12.006

    Article  Google Scholar 

  • TBS-SCT (2014) Contaminants & Media. http://www.tbs-sct.gc.ca/fcsi-rscf/cm-eng.aspx?clear=1. Accessed 27 Feb 2014

  • UN (2001) Stockholm convention on persistent organic pollutants. http://chm.pops.int/Convention/tabid/54/language/en-GB/Default.aspx. 2014

  • UNEP (2002) PCB transformers and capacitors from management to reclassification and disposal. UNEP Chemicals, United Nations Environmental Programme, Geneva, Switzerland

    Google Scholar 

  • USEPA (2014) Search superfund site information. http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm. Accessed 27 Feb 2014

  • Valentín L, Nousiainen A, Mikkonen A (2013) Introduction to organic contaminants in soil: concepts and risks. In: Vicent T, Caminal G, Eljarrat E, Barceló D (eds) Emerging organic contaminants in sludges: analysis, fate and biological treatment. Springer, Berlin. doi:10.1007/698_2012_208

    Google Scholar 

  • Marc van Liedekerke GP, Sabine Rabl-Berger, Mark Kibblewhite, Geertrui Louwagie (2014) Progress in the management of Contaminated Sites in Europe. Report EUR 26376 EN. Institute for Environment and Sustainability. Joint Research Center. European Commission, Luxembourg. http://dx.doi.org/10.1016/j.seppur.2013.12.035

  • Varanasi P, Fullana A, Sidhu S (2007) Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 66:1031–1038

    Article  CAS  Google Scholar 

  • Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359, http://dx.doi.org/10.1016/j.cej.2013.01.041

    Article  CAS  Google Scholar 

  • Virkutyte J, Sillanpaa M, Latostenmaa P (2002) Electrokinetic soil remediation—critical overview. Sci Total Environ 289:97–121

    Article  CAS  Google Scholar 

  • Wang C-B, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  CAS  Google Scholar 

  • Wang Y, Zhou D, Wang Y, Wang L, Cang L (2012) Automatic pH control system enhances the dechlorination of 2,4,4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0. Environ Sci Pollut Res 19(2):448–457. doi:10.1007/s11356-011-0587-0

    Article  CAS  Google Scholar 

  • Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35:76–82

    Article  CAS  Google Scholar 

  • Yak HK, Wenclawiak BW, Cheng IF, Doyle JG, Wai CM (1999) Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environ Sci Technol 33(8):1307–1310

    Article  CAS  Google Scholar 

  • Yan W, Lien H-L, Koel BE, Zhang W (2013) Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environ Sci Proc Imp 15:63–77

    Article  CAS  Google Scholar 

  • Yang GCC, Tu H-C, Hung CH (2007) Stability of nanoiron slurries and their transport in the subsurface environment. Sep Purif Technol 58:166–172

    Article  CAS  Google Scholar 

  • Yukselen-Aksoy Y, Reddy KR (2012) Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim Acta 86:164–169. doi:10.1016/j.electacta.2012.03.049

    Article  CAS  Google Scholar 

  • Zhang W, Elliott DW (2006) Applications of iron nanoparticles for groundwater remediation. Remediation J 16(2):7–21

    Article  Google Scholar 

  • Zhou Q, Lin H (2013) Influence of surfactants on degradation of 1-(2-Chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron. Clean 41(2):128–133. doi:10.1002/clen.201100650

    CAS  Google Scholar 

Download references

Acknowledgment

This work has been funded by the research grant SFRH/BD/76070/2011, by project PTDC/AGR-AAM/101643/2008 NanoDC under Portuguese National funds through “Fundação para a Ciência e a Tecnologia,” and by FP7-PEOPLE-IRSES-2010-269289-ELECTROACROSS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena I. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gomes, H.I., Fan, G., Ottosen, L.M., Dias-Ferreira, C., Ribeiro, A.B. (2016). Nanoremediation Coupled to Electrokinetics for PCB Removal from Soil. In: Ribeiro, A., Mateus, E., Couto, N. (eds) Electrokinetics Across Disciplines and Continents. Springer, Cham. https://doi.org/10.1007/978-3-319-20179-5_17

Download citation

Publish with us

Policies and ethics