Skip to main content

Sleep Features and Underlying Mechanisms Related to Epilepsy and Its Long Term Monitoring

  • Chapter
Cyberphysical Systems for Epilepsy and Related Brain Disorders

Abstract

The reciprocal relationship between sleep and epilepsy has been recognized since antiquity. The exact mechanisms underlying the precise nature of this relation though, remain unclear even today. The scope of this chapter is to describe the basic neurophysiologic mechanisms underlying sleep and its relation to the interictal epileptiform discharges and epileptic seizures. Furthermore, the theoretical background of the mechanisms involved in the interaction of sleep and epilepsy are discussed especially the effects that sleep mechanisms have on altering brain synchrony and excitability, which consist the hallmark of epileptiform activity in the brain. Finally, aspects of the open problems in polysomnographic long term monitoring of epilepsy are examined, which the ARMOR approached aimed to address.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kothare S, Kaleyias J (2010) Sleep and epilepsy in children and adolescents. Sleep Med 11(7):674–685

    Google Scholar 

  2. Tsiptsios DI, Howard RS, Koutroumanidis MA (2010) Electroencephalographic assessment of patients with epileptic seizures. Expert Rev Neurother 10(12):1869–1886

    Google Scholar 

  3. Kostopoulos GK (2009) Brain mechanisms linking epilepsy to sleep. In: Schwartzkroin PA (ed) Encyclopedia of basic epilepsy research, vol 3. Academic, Oxford, pp 1327–1336

    Google Scholar 

  4. Panayiotopoulos CP (2006) The epilepsies: seizures, syndromes and management. Bladon Medical Publishing, Oxfordshire, http://www.ncbi.nlm.nih.gov/books/NBK2606/

    Google Scholar 

  5. Panayiotopoulos CP (2010) A clinical guide to epileptic syndromes and their treatment. Springer, London

    Google Scholar 

  6. Gowers WR (1885) Epilepsy and other chronic convulsive diseases. William Wood and Company, New York

    Google Scholar 

  7. Bazil CW (2003) Epilepsy and sleep disturbance. Epilepsy Behav 4(suppl 2):S39–S45

    Google Scholar 

  8. Galer S, Urbain C, De Tiège X, Peigneux P, Van Bogaert P (2012) Impaired sleep-related consolidation of non-verbal declarative memory in benign childhood epilepsy: a preliminary study. Front Hum Neurosci. Conference Abstract: Belgian Brain Council. doi:10.3389/conf.fnhum.2012.210.00029

  9. Derry CP, Duncan JS, Berkovic SF (2006) Paroxysmal motor disorders of sleep: the clinical spectrum and differentiation from epilepsy. Epilepsia 47(11):1775–1791

    Google Scholar 

  10. Manni R, Terzaghi M (2010) Comorbidity between epilepsy and sleep disorders. Epilepsy Res 90(3):171–177

    Google Scholar 

  11. Placidi F, Scalise A, Marciani MG, Romigi A, Diomedi M, Gigli GL (2000) Effect of antiepileptic drugs on sleep. Clin Neurophysiol 111(suppl 2):S115–S119

    Google Scholar 

  12. Legros B, Bazil CW (2003) Effects of antiepileptic drugs on sleep architecture: a pilot study. Sleep Med 4(1):51–55

    Google Scholar 

  13. Bazil CW (2003) Effects of antiepileptic drugs on sleep structure: are all drugs equal? CNS Drugs 17(10):719–728

    Google Scholar 

  14. Díaz-Negrillo A (2013) Influence of sleep and sleep deprivation on ictal and interictal epileptiform activity. Epilepsy Res Treat 2013, 492524. doi:10.1155/2013/492524

  15. Malow BA (2004) Sleep deprivation and epilepsy. Epilepsy Curr 4(5):193–195. doi:10.1111/j.1535-7597.2004.04509.x

    Google Scholar 

  16. Vaughn B, D’Cruz O (2004) Sleep and epilepsy. Semin Neurol 24:301–313

    Google Scholar 

  17. Tezer FI, Remi J, Erbil N, Noachtar S, Saygi S (2014) A reduction of sleep spindles heralds seizures in focal epilepsy. Clin Neurophysiol 125:2207–2211

    Google Scholar 

  18. Herman S, Walczak T, Bazil C (2001) Distribution of partial seizures during the sleep-wake cycle: differences by seizure onset site. Neurology 56(11):1453–1459

    Google Scholar 

  19. Miano S, Paolino M, Peraita-Adrados R et al (2009) Prevalence of EEG paroxysmal activity in a population of children with obstructive sleep apnea syndrome. Sleep 32:522–529

    Google Scholar 

  20. Shvarts V, Chung S (2013) Epilepsy, antiseizure therapy, and sleep cycle parameters. Epilepsy Res Treat 2013, 670682. doi:10.1155/2013/670682

  21. Olbrich E, Claussen JC, Achermann P (2011) The multiple time scales of sleep dynamics as a challenge for modelling the sleeping brain. Philos Trans A Math Phys Eng Sci 369(1952):3884–3901

    MATH  MathSciNet  Google Scholar 

  22. Saper CB (2013) The neurobiology of sleep. Continuum (Minneap Minn) 19(1 Sleep Disorders):19–31

    Google Scholar 

  23. Gvilia I (2010) Underlying brain mechanisms that regulate sleep-wakefulness cycles. Int Rev Neurobiol 93:1–21. doi:10.1016/S0074-7742(10)93001-8

    Google Scholar 

  24. Parrino L, Ferri R, Bruni O, Terzano MG (2012) Cyclic alternating pattern (CAP): The marker of sleep instability. Sleep Med Rev 16(1):27–45

    Google Scholar 

  25. Destexhe A, Sejnowski TJ (2010) Sleep and sleep states: thalamic regulation. In: Squire LH (ed) Encyclopedia of neuroscience. Academic, Oxford, pp 973–976

    Google Scholar 

  26. Beenhakker MP, Huguenard JR (2009) Neurons that fire together also conspire together: is normal sleep circuitry hijacked to generate epilepsy? Neuron 62(5):612–632

    Google Scholar 

  27. Urakami Y (2008) Relationships between sleep spindles and activities of cerebral cortex as determined by simultaneous EEG and MEG recording. J Clin Neurophysiol 25:13–24

    Google Scholar 

  28. Dehghani N, Cash SS, Chen CC, Hagler DJ, Huang M, Dale AM, Halgren E (2010) Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS One 5, e11454

    Google Scholar 

  29. Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I (2011) Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci 31:17821–17834

    Google Scholar 

  30. Frauscher B, von Ellenrieder N, Dubeau F, Gotman J (2015) Scalp spindles are associated with widespread intracranial activity with unexpectedly low synchrony. Neuroimage 105:1–12

    Google Scholar 

  31. Urakami Υ, Ioannides ΑΑ, Kostopoulos GK (2012) Chapter 4 Sleep spindles-as a biomarker of brain function and plasticity. In: Dr. Ihsan Mohammad Abud A (ed) Advances in clinical neurophysiology, InTech. p 73–108. ISBN: 978-953-51-0806-1, doi:10.5772/48427. http://www.intechopen.com/books/advances-in-clinical-neurophysiology/sleep-spindles-as-a-biomarker-of-brain-function-and-plasticity

  32. Khazipov R, Sirota A, Leinekugel X, Holmes GL, Ben Ari Y, Buzsaki G (2004) Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature 432:758–761

    Google Scholar 

  33. Colrain IM (2005) The K-complex: a 7-decade history. Sleep 28:255–273

    Google Scholar 

  34. Stickgold R, Walker MP (2013) Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci 16:139–145

    Google Scholar 

  35. McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291–318

    Google Scholar 

  36. Ball GJ, Gloor P, Schaul N (1977) The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr Clin Neurophysiol 43(3):346–361

    Google Scholar 

  37. Nunez A, Amzica F, Steriade M (1992) Voltage-dependent fast (20-40Hz) oscillations in long-axoned neocortical neurons. Neuroscience 51:7–10

    Google Scholar 

  38. Steriade M, Amzica F (1998) Coalescence of sleep rhythms and their chronology in corticothalamic networks. Sleep Res Online 1:1–10

    Google Scholar 

  39. Kokkinos V, Kostopoulos GK (2011) Human non-rapid eye movement stage II sleep spindles are blocked upon spontaneous K-complex coincidence and resume as higher frequency spindles afterwards. J Sleep Res 20(1 Pt 1):57–72

    Google Scholar 

  40. Kokkinos V, Koupparis AM, Kostopoulos GK (2013) An intra-K-complex oscillation with independent and labile frequency and topography in NREM sleep. Front Hum Neurosci 7:163

    Google Scholar 

  41. Terzano MG, Parrino L, Anelli S, Halasz P (1989) Modulation of generalized spike-and-wave discharges during sleep by cyclic alternating pattern. Epilepsia 30(6):772–781

    Google Scholar 

  42. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW (2012) Control of sleep and wakefulness. Physiol Rev 92(3):1087–1187

    Google Scholar 

  43. Ioannides AA, Corsi-Cabrera M, Fenwick PB, Del Rio PY, Laskaris NA, Khurshudyan A, Theofilou D, Shibata T, Uchida S, Nakabayashi T, Kostopoulos GK (2004) MEG tomography of human cortex and brainstem activity in waking and REM sleep saccades. Cereb Cortex 14:56–72

    Google Scholar 

  44. Ioannides AA, Kostopoulos GK, Liu LC, Fenwick PBC (2009) MEG identifies dorsal medial brain activations during sleep. Neuroimage 44:455–468

    Google Scholar 

  45. Domhoff GW (2011) The neural substrate for dreaming: Is it a subsystem of the default network? Conscious Cogn 20:1163–1174

    Google Scholar 

  46. Fosse R, Domhoff GW (2007) Dreaming as non-executive orienting: A conceptual framework for consciousness during sleep. In: Barrett D, McNamara P (eds) The new science of dreaming: content, recall, and personality correlates, vol 2. Praeger, Westport, CT, pp 49–78

    Google Scholar 

  47. Mula M, Monaco F (2011) Ictal and peri-ictal psychopathology. Behav Neurol 24(1):21–25

    Google Scholar 

  48. Staley KJ, Dudek FE (2006) Interictal spikes and epileptogenesis. Epilepsy Curr 6(6):199–202. doi:10.1111/j.1535-7511.2006.00145.x

    Google Scholar 

  49. Bonakis A, Koutroumanidis M (2009) Epileptic discharges and phasic sleep phenomena in patients with juvenile myoclonic epilepsy. Epilepsia 50(11):2434–2445

    Google Scholar 

  50. Koutroumanidis M, Tsiptsios D, Kokkinos V, Kostopoulos GK (2012) Focal and generalized EEG paroxysms in childhood absence epilepsy: topographic associations and distinctive behaviors during the first cycle of non-REM sleep. Epilepsia 53(5):840–849

    Google Scholar 

  51. Sato S, Dreifuss FE, Penry JK (1973) The effect of sleep on spike wave discharges in absence seizures. Neurology 23(12):1335–1345

    Google Scholar 

  52. Shouse MN, Scordato JC, Farber PR (2004) Sleep and arousal mechanisms in experimental epilepsy: epileptic components of NREM and antiepileptic components of REM sleep. Ment Retard Dev Disabil Res Rev 10:117–121

    Google Scholar 

  53. Ferrillo F, Beelke M, De Carli F, Cossu M, Munari C, Rosadini G, Nobili L (2000) Sleep-EEG modulation of interictal epileptiform discharges in adult partial epilepsy: a spectral analysis study. Clin Neurophysiol 111(5):916–923

    Google Scholar 

  54. Sammaritano M, Gigli GL, Gotman J (1991) Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology 41(2):290–297

    Google Scholar 

  55. Timofeev I, Steriade M (2004) Neocortical seizures: Initiation, development and cessation. Neuroscience 123(2):299–336

    Google Scholar 

  56. Bagshaw AP, Jacobs J, LeVan P et al (2009) Effect of sleep stage on interictal high-frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy. Epilepsia 50:617–628

    Google Scholar 

  57. Schevon CA, Trevelyan AJ, Schroeder CE, Goodman RR, McKhann G, Emerson RG (2009) Spatial characterization of interictal high frequency oscillations in epileptic neocortex. Brain 132(11):3047–3059

    Google Scholar 

  58. Dümpelmann M, Jacobs J, Schulze-Bonhage A (2015) Temporal and spatial characteristics of high frequency oscillations as a new biomarker in epilepsy. Epilepsia 56(2):197–206

    Google Scholar 

  59. Salami P, Lévesque M, Benini R, Behr C, Gotman J, Avoli M (2014) Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy. Neurobiol Dis 67:97–106

    Google Scholar 

  60. Frauscher B, von Ellenrieder N, Ferrari-Marinho T, Avoli M, Dubeau F, Gotman J (2015) Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves. Brain 2015:1–13

    Google Scholar 

  61. Langdon-Down M, Brain W (1929) Time of day in relation to convulsions in epilepsy. Lancet 2:1029–1032

    Google Scholar 

  62. Janz D (1962) The grand mal epilepsies and the sleeping-waking cycle. Epilepsia 3:69–109

    Google Scholar 

  63. Panayiotopoulos CP, Michael M, Sanders S, Valeta T, Koutroumanidis M (2008) Benign childhood focal epilepsies: assessment of established and newly recognized syndromes. Brain 131:2264–2286

    Google Scholar 

  64. Crespel A, Coubes P, Baldy-Moulinier M (2000) Sleep influence on seizures and epilepsy effects on sleep in partial frontal and temporal lobe epilepsies. Clin Neurophysiol 111(suppl 2):S54–S59

    Google Scholar 

  65. Halasz P, Kelemen A, Szucs A (2012) Physiopathogenetic interrelationship between nocturnal frontal lobe epilepsy and NREM arousal parasomnias. Epilepsy Res Treat 2012, 312693, 8 pages. doi:10.1155/2012/312693

  66. Singhal N, Sullivan J (2014) Continuous spike-wave during slow wave sleep and related conditions. ISRN Neurol 2014, 619079, 6 pages. doi:10.1155/2014/619079

  67. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P (2008) Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci U S A 105(39):15160–15165

    Google Scholar 

  68. Malow BA, Lin X, Kushwaha R, Aldrich MS (1998) Interictal spiking increases with sleep depth in temporal lobe epilepsy. Epilepsia 39(12):1309–1316

    Google Scholar 

  69. Minecan D, Natarajan A, Marzec M, Malow B (2002) Relationship of epileptic seizures to sleep stage and sleep depth. Sleep 25(8):899–904

    Google Scholar 

  70. Nobili L, Baglietto MG, Beelke M, De Carli F, De Negri E, Tortorelli S, Ferrillo F (2000) Spindles-inducing mechanism modulates sleep activation of interictal epileptiform discharges in the Landau-Kleffner syndrome. Epilepsia 41(2):201–206

    Google Scholar 

  71. Nakabayashi T, Uchida S, Maehara T, Hirai N, Nakamura M, Arakaki H, Shimisu H, Okubo Y (2001) Absence of sleep spindles in human medial and basal temporal lobes. Psychiatry Clin Neurosci 55(1):57–65

    Google Scholar 

  72. Douw L, van Dellen E, de Groot M, Heimans JJ, Klein M, Stam CJ, Reijneveld JC (2010) Epilepsy is related to theta band brain connectivity and network topology in brain tumor patients. BMC Neurosci 11:103. doi:10.1186/1471-2202-11-103

    Google Scholar 

  73. Bersagliere A, Achermann P, Lo Russo G, Proserpio P, Nobili L (2013) Spindle frequency activity may provide lateralizing information in drug-resistant nocturnal mesial frontal lobe epilepsy: a pilot study on the contribution of sleep recordings. Seizure 22(9):719–725

    Google Scholar 

  74. Sinha S (2011) Basic mechanisms of sleep and epilepsy. J Clin Neurophysiol 28(2):103–110. doi:10.1097/WNP.0b013e3182120d41

    Google Scholar 

  75. Gloor P (1978) Generalized epilepsy with bilateral synchronous spike and wave discharge. New findings concerning its physiological mechanism. Electroencephalogr Clin Neurophysiol Suppl 34:S245–S249

    Google Scholar 

  76. Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68(3):649–742

    Google Scholar 

  77. Maheshwari A, Noebels JL (2014) Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog Brain Res 213:223–252

    Google Scholar 

  78. Avoli M (2012) A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53(5):779–789

    Google Scholar 

  79. Kostopoulos GK (2000) Spike-and-wave discharges of absence seizures as a transformation of sleep spindles: the continuing development of a hypothesis. Clin Neurophysiol 111(suppl 2):S27–S38

    Google Scholar 

  80. Coenen AM, Van Luijtelaar EL (2003) Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav Genet 33(6):635–655

    Google Scholar 

  81. Avanzini G, Vergnes M, Spreafico R, Marescaux C (1993) Calcium dependent regulation of genetically determined spike and waves by the reticular thalamic nucleus of rats. Epilepsia 34(1):1–7

    Google Scholar 

  82. McCormick DA, Contreras D (2001) On the cellular and network bases of epileptic seizures. Annu Rev Physiol 63:815–846

    Google Scholar 

  83. Kostopoulos GK, Psarropoulou CT (1992) Possible mechanisms underlying hyperexcitability in the epileptic mutant mouse tottering. J Neural Transm Suppl 35:109–124

    Google Scholar 

  84. Meeren H, van Luijtelaar G, Lopes da Silva F, Coenen A (2005) Evolving concepts on the pathophysiology of absence seizures: the cortical focus theory. Arch Neurol 62(3):371–376

    Google Scholar 

  85. Miao A, Tang L, Xiang J, Guan Q, Ge H, Liu H, Wu T, Chen Q, Yang L, Lu X, Hu Z, Wang X (2014) Dynamic magnetic source imaging of absence seizure initialization and propagation: a magnetoencephalography study. Epilepsy Res 108(3):468–480

    Google Scholar 

  86. Tenney JR, Fujiwara H, Horn PS, Jacobson SE, Glauser TA, Rose DF (2013) Focal corticothalamic sources during generalized absence seizures: a MEG study. Epilepsy Res 106(1–2):113–122

    Google Scholar 

  87. Carney PW, Masterton RA, Flanagan D, Berkovic SF, Jackson GD (2012) The frontal lobe in absence epilepsy: EEG-fMRI findings. Neurology 78(15):1157–1165

    Google Scholar 

  88. Moeller F, LeVan P, Muhle H, Stephani U, Dubeau F, Siniatchkin M, Gotman J (2010) Absence seizures: individual patterns revealed by EEG-fMRI. Epilepsia 51(10):2000–2010

    Google Scholar 

  89. Tucker DM, Brown M, Luu P, Holmes MD (2007) Discharges in ventromedial frontal cortex during absence spells. Epilepsy Behav 11(2–3):546–557

    Google Scholar 

  90. Noebels JL (1984) A single gene error of noradrenergic axon growth synchronizescentral neurones. Nature 310(5976):409–411

    Google Scholar 

  91. Phillis JW, Kostopoulos GK (1975) Adenosine as putative transmitter in the cerebral cortex. Studies with potentiators and antagonists. Life Sci 17(1975):1085–1094

    Google Scholar 

  92. Masino SA, Kawamura M Jr, Ruskin DN (2014) Adenosine receptors and epilepsy: current evidence and future potential. Int Rev Neurobiol 119:233–255

    Google Scholar 

  93. Angelatou F, Pagonopoulou O, Maraziotis T, Olivier A, Villemeure JG, Avoli M, Kostopoulos G (1993) Upregulation of A1 adenosine receptors in human temporal lobe epilepsy: a quantitative autoradiographic study. Neurosci Lett 163:11–14

    Google Scholar 

  94. Kostopoulos G, Drapeau C, Avoli M, Olivier A, Villemeure JG (1989) Endogenous adenosine can reduce epileptiform activity in the human epileptogenic cortex maintained in vitro. Neurosci Lett 106(1–2):119–124

    Google Scholar 

  95. Hofstra WA, de Weerd AW (2009) The circadian rhythm and its interaction with human epilepsy: a review of literature. Sleep Med Rev 13(6):413–420

    Google Scholar 

  96. Goudarzi E, Elahdadi Salmani M, Lashkarbolouki T, Goudarzi I (2015) Hippocampal orexin receptors inactivation reduces PTZ induced seizures of male rats. Pharmacol Biochem Behav 130:77–83

    Google Scholar 

  97. Connors BW, Bear MF, Paradiso MA (2006) Neuroscience: exploring the brain, 3rd edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  98. Cho CH (2012) Molecular mechanism of circadian rhythmicity of seizures in temporal lobe epilepsy. Front Cell Neurosci 6:55

    Google Scholar 

  99. Gerstner JR, Smith GG, Lenz O et al (2014) BMAL1 controls the diurnal rhythm and set point for electrical seizure threshold in mice. Front Syst Neurosci 8:121

    Google Scholar 

  100. Aiba I, Noebels JL (2015) Spreading depolarization in the brainstem mediates sudden cardiorespiratory arrest in mouse SUDEP models. Sci Transl Med 7(282):282ra46. doi:10.1126/scitranslmed.aaa4050

    Google Scholar 

  101. Banach M, Gurdziel E, Jędrych M, Borowicz KK (2011) Melatonin in experimental seizures and epilepsy. Pharmacol Rep 63(1):1–11

    Google Scholar 

  102. Massé F, Van Bussel M, Serteyn A, Arends J, Penders J (2013) Miniaturized wireless ECG monitor for real-time detection of epileptic seizures. ACM Trans Embed Comput Syst 12(4):102. doi:10.1145/2485984.2485990

    Google Scholar 

  103. Meier R, Dittrich H, Schulze-Bonhage A, Aertsen A (2008) Detecting epileptic seizures in long term human EEG: a new approach to automatic online and real time detection and classification of polymorphic seizure patterns. Clin Neurophysiol 25(3):119–131

    Google Scholar 

  104. Van de Vel A, Cuppens K, Bonroy B, Milosevic M, Jansen K, Van Huffel S, Vanrumste B, Lagae L, Ceulemans B (2013) Non-EEG seizure-detection systems and potential SUDEP prevention: state of the art. Seizure 22(5):345–355

    Google Scholar 

  105. Cavazos J, Girouard M, Whitmire L (2015) Novel ambulatory EMG-based GTC seizure detection device for home & hospital use (I6-4B). Neurology 84(14 Supplement)

    Google Scholar 

  106. Redline S, Dean D, Sanders MH (2013) Entering the era of “big data”: getting our metrics right. Sleep 36(4):465–469

    Google Scholar 

  107. Fisher RS (2012) Therapeutic devices for epilepsy. Ann Neurol 71:157–168. doi:10.1002/ana.22621

    Google Scholar 

  108. Beniczky S, Polster T, Kjaer T, Hjalgrim H (2013) Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia 54(4):e58–e61. doi:10.1111/epi.12120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George K. Kostopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giourou, E., Stavropoulou-Deli, A., Theofilatos, K., Kostopoulos, G.K., Ioannides, A.A., Koutroumanidis, M. (2015). Sleep Features and Underlying Mechanisms Related to Epilepsy and Its Long Term Monitoring. In: Voros, N., Antonopoulos, C. (eds) Cyberphysical Systems for Epilepsy and Related Brain Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-20049-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20049-1_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20048-4

  • Online ISBN: 978-3-319-20049-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics