Skip to main content

A Physical Derivation of the Kerr–Newman Black Hole Solution

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

Abstract

According to the no-hair theorem, the Kerr–Newman black hole solution represents the most general asymptotically flat, stationary (electro-) vacuum black hole solution in general relativity. The procedure described here shows how this solution can indeed be constructed as the unique solution to the corresponding boundary value problem of the axially symmetric Einstein–Maxwell equations in a straightforward manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A connected horizon means a single black hole. We are not interested here in the problem of multi-black-hole equilibrium states.

References

  1. V. Belinski, E. Verdaguer, Gravitational Solitons (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  2. B. Carter, Black hole equilibrium states, in Black Holes, ed. by C. DeWitt, B.S. DeWitt (Gordon and Breach Science Publishers, New York, 1973), pp. 57–214

    Google Scholar 

  3. P.T. Chruściel, J.L. Costa, M. Heusler, Stationary black holes: uniqueness and beyond. Living Rev. Relativity 15, 7 (2012)

    ADS  Google Scholar 

  4. F.J. Ernst, New formulation of the axially symmetric gravitational field problem. II. Phys. Rev. 168, 1415–1417 (1968)

    Article  ADS  Google Scholar 

  5. I. Hauser, F.J. Ernst, A homogeneous Hilbert problem for the Kinnersley–Chitre transformations of electrovac space-times. J. Math. Phys. 21, 1418–1422 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973)

    Book  MATH  Google Scholar 

  7. R. Meinel, Constructive proof of the Kerr–Newman black hole uniqueness including the extreme case. Class. Quant. Grav. 29, 035004 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Meinel, R. Richter, Constructive proof of the Kerr–Newman black hole uniqueness: derivation of the full solution from scratch. arXiv:1208.0294 [gr-qc] (2012)

  9. R. Meinel, M. Ansorg, A. Kleinwächter, G. Neugebauer, D. Petroff, Relativistic Figures of Equilibrium (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  10. G. Neugebauer, Rotating bodies as boundary value problems. Ann. Phys. (Leipzig) 9, 342–354 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. Neugebauer, D. Kramer, Einstein–Maxwell solitons. J. Phys. A 16, 1927–1936 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  12. G. Neugebauer, R. Meinel, General relativistic gravitational field of a rigidly rotating disk of dust: solution in terms of ultraelliptic functions. Phys. Rev. Lett. 75, 3046–3047 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. G. Neugebauer, R. Meinel, Progress in relativistic gravitational theory using the inverse scattering method. J. Math. Phys. 44, 3407–3429 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. N.R. Sibgatullin, Oscillations and Waves in Strong Gravitational and Electromagnetic Fields (Springer, Berlin, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Meinel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meinel, R. (2016). A Physical Derivation of the Kerr–Newman Black Hole Solution. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_6

Download citation

Publish with us

Policies and ethics