Skip to main content

Quantum Harmonic Black Holes

  • Chapter
  • First Online:
1st Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 170))

Abstract

Inspired by the recent conjecture that black holes are condensates of gravitons, we investigate a simple model for the black hole degrees of freedom that is consistent both from the point of view of Quantum mechanics and of General Relativity. Since the two perspectives should “converge” into a unified picture for small, Planck size, objects, we expect our construction to be a useful step for understanding the physics of microscopic, quantum black holes. In particular, we show that a harmonically trapped condensate gives rise to two horizons, whereas the extremal case (corresponding to a remnant with vanishing Hawking temperature) is not contained in the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall use units such that \(c=1\), \(\hbar =\ell _\mathrm{p}\,m_\mathrm{p}\) and the Newton constant \(G_\mathrm{N}=\ell _\mathrm{p}/m_\mathrm{p}\).

  2. 2.

    This is nothing but the Newton oscillator, which would correspond to a homogenous BEC distribution in the Newtonian approximation.

  3. 3.

    Note we have already integrated out the angular coordinates.

  4. 4.

    The squared length \(\theta \) should not be confused with one of the angular coordinates of the previous expressions. Also, note \(\rho \) has already been integrated over the angles.

  5. 5.

    Note that for vanishing impact parameter, one does not expect any emission of classical gravitational waves.

References

  1. R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. Lett. 4, 375 (1960)

    Article  ADS  Google Scholar 

  2. J.D. Bekenstein, Lett. Nuovo Cim. 11, 467 (1974)

    Article  ADS  Google Scholar 

  3. R. Casadio, P. Nicolini, JHEP 0811, 072 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  4. R. Casadio, R. Garattini, F. Scardigli, Phys. Lett. B 679, 156 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Casadio, O. Micu, A. Orlandi, Eur. Phys. J. C 72, 2146 (2012)

    Article  ADS  Google Scholar 

  6. S. Chandrasekhar, The mathematical theory of black holes (Oxford University Press, Oxford, 1992)

    Google Scholar 

  7. P.-H. Chavanis, Phys. Rev. D 84, 043531 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  8. P.-H. Chavanis, Astrophys. J. 537, A127 (2012)

    Google Scholar 

  9. G. Dvali, C. Gomez, Self-Completeness of Einstein Gravity. arXiv:1005.3497 [hep-th]

  10. G. Dvali, C. Gomez, Phys. Lett. B 716, 240 (2012)

    Article  ADS  Google Scholar 

  11. G. Dvali, C. Gomez, Black Holes as critical point of quantum phase transition. arXiv:1207.4059 [hep-th]

  12. G. Dvali, C. Gomez, Fortsch. Phys. 61, 742 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Dvali, C. Gomez, Phys. Lett. B 719, 419 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  14. G. Dvali, C. Gomez, S. Mukhanov, Black Hole masses are quantized. arXiv:1106.5894 [hep-ph]

  15. S.W. Hawking, Nature 248, 30 (1974)

    Article  ADS  Google Scholar 

  16. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)]

    Google Scholar 

  17. P. Nicolini, Int. J. Mod. Phys. A 24, 1229 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. P. Nicolini, A. Smailagic, E. Spallucci, Phys. Lett. B 632, 547 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. P. Nicolini, A. Orlandi, E. Spallucci, The final stage of gravitationally collapsed thick matter layers. arXiv:1110.5332 [gr-qc]

  20. L.P. Pitaevskii, S. Stringari, Bose-Einstein condensation (Oxford University Press, Oxford, 2003), Chap. 11

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the European Cooperation in Science and Technology (COST) action MP0905 “Black Holes in a Violent Universe”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Orlandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Orlandi, A., Casadio, R. (2016). Quantum Harmonic Black Holes. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 1st Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 170. Springer, Cham. https://doi.org/10.1007/978-3-319-20046-0_32

Download citation

Publish with us

Policies and ethics