Skip to main content

Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Pancreatic neuroendocrine tumors are abnormal growths of hormone-producing cells in the pancreas. Different from the brain in the skull, the pancreas in the abdomen can be largely deformed by the body posture and the surrounding organs. In consequence, both tumor growth and pancreatic motion attribute to the tumor shape difference observable from images. As images at different time points are used to personalize the tumor growth model, the prediction accuracy may be reduced if such motion is ignored. Therefore, we incorporate the image-derived pancreatic motion to tumor growth personalization. For realistic mechanical interactions, the multiplicative growth decomposition is used with a hyperelastic constitutive law to model tumor mass effect, which allows growth modeling without compromising the mechanical accuracy. With also the FDG-PET and contrast-enhanced CT images, the functional, structural, and motion data are combined for a more patient-specific model. Experiments on synthetic and clinical data show the importance of image-derived motion on estimating physiologically plausible mechanical properties and the promising performance of our framework. From six patient data sets, the recall, precision, Dice coefficient, relative volume difference, and average surface distance were 89.8\(\,\pm \) 3.5 %, 85.6\(\,\pm \) 7.5 %, 87.4\(\,\pm \) 3.6 %, 9.7\(\,\pm \) 7.2 %, and 0.6\(\,\pm \) 0.2 mm, respectively.

The rights of this work are transferred to the extent transferable according to title 17 U.S.C. 105.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The left superscript and subscript represent the measuring time and reference configuration.

References

  1. Bae, K.T.: Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 256(1), 32–61 (2010)

    Article  Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  3. Clatz, O., Sermesant, M., Bondiau, P.Y., Delingette, H., Warfield, S.K., Malandain, G., Ayache, N.: Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with biomechanical deformation. IEEE Trans. Med. Imaging 24(10), 1334–1346 (2005)

    Article  Google Scholar 

  4. Ehehalt, F., Saeger, H.D., Schmidt, C.M., Grützmann, R.: Neuroendocrine tumors of the pancreas. Oncologist 14(5), 456–467 (2009)

    Article  Google Scholar 

  5. Feng, M., Balter, J.M., Normolle, D., Adusumilli, S., Cao, Y., Chenevert, T.L., Ben-Josef, E.: Characterization of pancreatic tumor motion using cine MRI: surrogates for tumor position should be used with caution. Int. J. Radiat. Oncol. Biol. Phys. 74(3), 884–891 (2009)

    Article  Google Scholar 

  6. Friedl, P., Locker, J., Sahai, E., Segall, J.E.: Classifying collective cancer cell invasion. Nat. Cell Biol. 14(8), 777–783 (2012)

    Article  Google Scholar 

  7. Hogea, C., Davatzikos, C., Biros, G.: An image-driven parameter estimation problem for a reaction-diffusion glioma growth model with mass effects. J. Math. Biol. 56(6), 793–825 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. John Wiley & Sons Inc, Chichester (2000)

    Google Scholar 

  9. Konukoglu, E., Clatz, O., Menze, B.H., Stieltjes, B., Weber, M.A., Mandonnet, E., Delingette, H., Ayache, N.: Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans. Med. Imaging 29(1), 77–95 (2010)

    Article  Google Scholar 

  10. Libutti, S.K., Choyke, P.L., Bartlett, D.L., Vargas, H., Walther, M., Lubensky, I., Glenn, G., Linehan, W.M., Alexander, H.R.: Pancreatic neuroendocrine tumors associated with von Hippel Lindau disease: diagnostic and management recommendations. Surgery 124(6), 1153–1159 (1998)

    Article  Google Scholar 

  11. Lubarda, V.A., Hoger, A.: On the mechanics of solids with a growing mass. Int. J. Solids Struct. 39(18), 4627–4664 (2002)

    Article  MATH  Google Scholar 

  12. Menze, B.H., Van Leemput, K., Honkela, A., Konukoglu, E., Weber, M.A., Ayache, N., Golland, P.: A generative approach for image-based modeling of tumor growth. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 735–747. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Mohamed, A., Davatzikos, C.: Finite element modeling of brain tumor mass-effect from 3D medical images. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 400–408. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A.: Mutual-information-based registration of medical images: a survey. IEEE Trans. Med. Imaging 22(8), 986–1004 (2003)

    Article  Google Scholar 

  15. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27(4), 455–467 (1994)

    Article  Google Scholar 

  16. Rowan, T.: Functional Stability Analysis of Numerical Algorithms. Ph.D. thesis, University of Texas at Austin (1990)

    Google Scholar 

  17. West, G.B., Brown, J.H., Enquist, B.J.: A general model for ontogenetic growth. Nature 413(6856), 628–631 (2001)

    Article  Google Scholar 

  18. Wong, K.C.L., Summers, R., Kebebew, E., Yao, J.: Tumor growth prediction with hyperelastic biomechanical model, physiological data fusion, and nonlinear optimization. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 25–32. Springer, Heidelberg (2014)

    Google Scholar 

  19. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wong, K.C.L., Summers, R.M., Kebebew, E., Yao, J. (2015). Pancreatic Tumor Growth Prediction with Multiplicative Growth and Image-Derived Motion. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics