Skip to main content

Weighted Hashing with Multiple Cues for Cell-Level Analysis of Histopathological Images

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9123))

Included in the following conference series:

Abstract

Recently, content-based image retrieval has been investigated for histopathological image analysis, focusing on improving the accuracy and scalability. The main motivation is to interpret a new image (i.e., query image) by searching among a potentially large-scale database of training images in real-time. Hashing methods have been employed because of their promising performance. However, most previous works apply hashing algorithms on the whole images, while the important information of histopathological images usually lies in individual cells. In addition, they usually only hash one type of features, even though it is often necessary to inspect multiple cues of cells. Therefore, we propose a probabilistic-based hashing framework to model multiple cues of cells for accurate analysis of histopathological images. Specifically, each cue of a cell is compressed as binary codes by kernelized and supervised hashing, and the importance of each hash entry is determined adaptively according to its discriminativity, which can be represented as probability scores. Given these scores, we also propose several feature fusion and selection schemes to integrate their strengths. The classification of the whole image is conducted by aggregating the results from multiple cues of all cells. We apply our algorithm on differentiating adenocarcinoma and squamous carcinoma, i.e., two types of lung cancers, using a large dataset containing thousands of lung microscopic tissue images. It achieves \(90.3\,\%\) accuracy by hashing and retrieving multiple cues of half-million cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Comaniciu, D., Meer, P., Foran, D.J.: Image-guided decision support system for pathology. Mach. Vis. Appl. 11(4), 213–224 (1999)

    Article  Google Scholar 

  2. Müller, H., Geissbühler, A., Ruch, P.: ImageCLEF 2004: combining image and multi-lingual search for medical image retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J.F., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 718–727. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Syeda-Mahmood, T., Turaga, P., Beymer, D., Wang, F., Amir, A., Greenspan, H., Pohl, K.: Shape-based similarity retrieval of doppler images for clinical decision support. In: CVPR, pp. 855–862. IEEE (2010)

    Google Scholar 

  4. Foran, D.J., Yang, L., et al.: Imageminer: a software system for comparative analysis of tissue microarrays using content-based image retrieval, high-performance computing, and grid technology. JAMIA 18(4), 403–415 (2011)

    Google Scholar 

  5. Dy, J.G., Brodley, C.E., Kak, A., Broderick, L.S., Aisen, A.M.: Unsupervised feature selection applied to content-based retrieval of lung images. TPAMI 25(3), 373–378 (2003)

    Article  Google Scholar 

  6. El-Naqa, I., Yang, Y., Galatsanos, N.P., Nishikawa, R.M., Wernick, M.N.: A similarity learning approach to content-based image retrieval: application to digital mammography. TMI 23(10), 1233–1244 (2004)

    Google Scholar 

  7. Greenspan, H., Pinhas, A.T.: Medical image categorization and retrieval for PACS using the GMM-KL framework. TITB 11(2), 190–202 (2007)

    Google Scholar 

  8. Langs, G., Hanbury, A., Menze, B., Müller, H.: VISCERAL: towards large data in medical imaging — challenges and directions. In: Greenspan, H., Müller, H., Syeda-Mahmood, T. (eds.) MCBR-CDS 2012. LNCS, vol. 7723, pp. 92–98. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Siegel, R., Naishadham, D., Jemal, A.: Cancer statistics, 2013. CAJC 63(1), 11–30 (2013)

    Google Scholar 

  10. Freeman, D.L.: Harrison’s principles of internal medicine. JAMA 286(8), 506 (2001)

    Article  Google Scholar 

  11. Kayser, G., Riede, U., Werner, M., Hufnagl, P., Kayser, K.: Towards an automated morphological classification of histological images of common lung carcinomas. Elec. J. Pathol. Histol. 8, 022–03 (2002)

    Google Scholar 

  12. Thunnissen, F., Diegenbach, P., Van Hattum, A., Tolboom, J., van der Sluis, D., Schaafsma, W., Houthoff, H., Baak, J.R.: Further evaluation of quantitative nuclear image features for classification of lung carcinomas. Pathol. Res. Pract. 188(4), 531–535 (1992)

    Article  Google Scholar 

  13. Mijović, Ž., Mihailović, D., Kostov, M.: Discriminant analysis of nuclear image variables in lung carcinoma. Facta Univ. Ser. Med. Biol. 15(1), 28–32 (2008)

    Google Scholar 

  14. Edwards, S., Roberts, C., McKean, M., Cockburn, J., Jeffrey, R., Kerr, K.: Preoperative histological classification of primary lung cancer: accuracy of diagnosis and use of the non-small cell category. Am. J. Clin. Path. 53(7), 537–540 (2000)

    Article  Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Zhang, X., Yang, L., Liu, W., Su, H., Zhang, S.: Mining histopathological images via composite hashing and online learning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 479–486. Springer, Heidelberg (2014)

    Google Scholar 

  17. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing scheme based on p-stable distributions. In: SoCG, pp. 253–262. ACM (2004)

    Google Scholar 

  18. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image search. In: CVPR (2009)

    Google Scholar 

  19. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, Berkeley, CA, 21–24 October 2006

    Google Scholar 

  20. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with kernels. In: CVPR, pp. 2074–2081 (2012)

    Google Scholar 

  21. Zhang, X., Su, H., Yang, L., Zhang, S.: Fine-grained histopathological image analysis via robust segmentation and large-scale retrieval. In: CVPR. IEEE (2015)

    Google Scholar 

  22. Xing, F., Su, H., Neltner, J., Yang, L.: Automatic ki-67 counting using robust cell detection and online dictionary learning. TBME 61(3), 859–870 (2014)

    Google Scholar 

  23. Carpenter, A.E., Jones, T.R., Lamprecht, M.R., Clarke, C., Kang, I.H., Friman, O., Guertin, D.A., Chang, J.H., Lindquist, R.A., Moffat, J., et al.: Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), R100 (2006)

    Article  Google Scholar 

  24. Arteta, C., Lempitsky, V., Noble, J.A., Zisserman, A.: Learning to detect cells using non-overlapping extremal regions. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 348–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. IJCV 42(3), 145–175 (2001)

    Article  MATH  Google Scholar 

  26. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  27. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NIPS (2008)

    Google Scholar 

  28. National Cancer Institute: The cancer genome atlas retrieved from https://tcga-data.nci.nih.gov (2013)

  29. Tabesh, A., Teverovskiy, M., Pang, H.Y., Kumar, V.P., Verbel, D., Kotsianti, A., Saidi, O.: Multifeature prostate cancer diagnosis and gleason grading of histological images. TMI 26(10), 1366–1378 (2007)

    Google Scholar 

  30. Doyle, S., Agner, S., Madabhushi, A., Feldman, M., Tomaszewski, J.: Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features. In: ISBI, pp. 496–499 (2008)

    Google Scholar 

  31. Zhang, X., Liu, W., Dundar, M., Badve, S., Zhang, S.: Towards large-scale histopathological image analysis: hashing-based image retrieval. TMI 34(2), 496–506 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoting Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, X., Su, H., Yang, L., Zhang, S. (2015). Weighted Hashing with Multiple Cues for Cell-Level Analysis of Histopathological Images. In: Ourselin, S., Alexander, D., Westin, CF., Cardoso, M. (eds) Information Processing in Medical Imaging. IPMI 2015. Lecture Notes in Computer Science(), vol 9123. Springer, Cham. https://doi.org/10.1007/978-3-319-19992-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19992-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19991-7

  • Online ISBN: 978-3-319-19992-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics