Skip to main content

Abstract

B cell lymphomas represent a diverse group of biologically and clinically distinct neoplasms, encompassing over 40 subtypes that derive from the malignant transformation of mature B cells, most commonly at the germinal centre (GC) stage of differentiation. Analogous to most cancer types, these tumours are caused by alterations of oncogenes and tumour suppressor genes, some of which have specific roles in GC development. This chapter will focus on the mechanisms and consequences of chromosomal translocations and other genetic lesions involved in the pathogenesis of the most common types of mature B cell lymphomas, including Mantle Cell Lymphoma, Follicular Lymphoma, Diffuse Large B Cell Lymphoma, and Burkitt Lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Klein U, Tu Y, Stolovitzky GA, Keller JL, Haddad J Jr, Miljkovic V, Cattoretti G, Califano A, Dalla-Favera R (2003) Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad Sci U S A 100(5):2639–2644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. MacLennan IC (1994) Germinal centers. Annu Rev Immunol 12:117–139

    Article  CAS  PubMed  Google Scholar 

  3. Rajewsky K (1996) Clonal selection and learning in the antibody system. Nature 381(6585):751–758

    Article  CAS  PubMed  Google Scholar 

  4. Allen CD, Okada T, Cyster JG (2007) Germinal-center organization and cellular dynamics. Immunity 27(2):190–202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Victora GD, Schwickert TA, Fooksman DR, Kamphorst AO, Meyer-Hermann M, Dustin ML, Nussenzweig MC (2010) Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143(4):592–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Neuberger MS, Ehrenstein MR, Klix N, Jolly CJ, Yelamos J, Rada C, Milstein C (1998) Monitoring and interpreting the intrinsic features of somatic hypermutation. Immunol Rev 162:107–116

    Article  CAS  PubMed  Google Scholar 

  7. Klein U, Dalla-Favera R (2008) Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol 8(1):22–33

    Article  CAS  PubMed  Google Scholar 

  8. Liu YJ, Arpin C, de Bouteiller O, Guret C, Banchereau J, Martinez-Valdez H, Lebecque S (1996) Sequential triggering of apoptosis, somatic mutation and isotype switch during germinal center development. Semin Immunol 8(3):169–177

    Article  CAS  PubMed  Google Scholar 

  9. Longerich S, Basu U, Alt F, Storb U (2006) AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18(2):164–174

    Article  CAS  PubMed  Google Scholar 

  10. Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shinkai Y, Honjo T (2000) Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102(5):553–563

    Article  CAS  PubMed  Google Scholar 

  11. Revy P, Muto T, Levy Y, Geissmann F, Plebani A, Sanal O, Catalan N, Forveille M, Dufourcq-Labelouse R, Gennery A, Tezcan I, Ersoy F, Kayserili H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A, Durandy A (2000) Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102(5):565–575

    Article  CAS  PubMed  Google Scholar 

  12. Cattoretti G, Chang CC, Cechova K, Zhang J, Ye BH, Falini B, Louie DC, Offit K, Chaganti RS, Dalla-Favera R (1995) BCL-6 protein is expressed in germinal-center B cells. Blood 86(1):45–53

    CAS  PubMed  Google Scholar 

  13. Chang CC, Ye BH, Chaganti RS, Dalla-Favera R (1996) BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci U S A 93(14):6947–6952

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ye BH, Cattoretti G, Shen Q, Zhang J, Hawe N, de Waard R, Leung C, Nouri-Shirazi M, Orazi A, Chaganti RS, Rothman P, Stall AM, Pandolfi PP, Dalla-Favera R (1997) The BCL-6 proto-oncogene controls germinal-centre formation and Th2- type inflammation. Nat Genet 16(2):161–170

    Article  CAS  PubMed  Google Scholar 

  15. Basso K, Saito M, Sumazin P, Margolin AA, Wang K, Lim WK, Kitagawa Y, Schneider C, Alvarez MJ, Califano A, Dalla-Favera R (2010) Integrated biochemical and computational approach identifies BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115(5):975–984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Niu H, Ye BH, Dalla-Favera R (1998) Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev 12(13):1953–1961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L, Yang SN, Ye K, Farinha P, Horsman DE, Gascoyne RD, Elemento O, Melnick A (2009) The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 113(22):5536–5548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Phan RT, Dalla-Favera R (2004) The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432(7017):635–639

    Article  CAS  PubMed  Google Scholar 

  19. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R (2005) BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat Immunol 6(10):1054–1060

    Article  CAS  PubMed  Google Scholar 

  20. Ranuncolo SM, Polo JM, Dierov J, Singer M, Kuo T, Greally J, Green R, Carroll M, Melnick A (2007) Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat Immunol 8(7):705–714

    Article  CAS  PubMed  Google Scholar 

  21. Ranuncolo SM, Polo JM, Melnick A (2008) BCL6 represses CHEK1 and suppresses DNA damage pathways in normal and malignant B-cells. Blood Cells Mol Dis 41(1):95–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13(2):199–212

    Article  CAS  PubMed  Google Scholar 

  23. Tunyaplin C, Shaffer AL, Angelin-Duclos CD, Yu X, Staudt LM, Calame KL (2004) Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. J Immunol 173(2):1158–1165

    Article  CAS  PubMed  Google Scholar 

  24. Küppers R, Klein U, Hansmann ML, Rajewsky K (1999) Cellular origin of human B-cell lymphomas. N Engl J Med 341(20):1520–1529

    Article  PubMed  Google Scholar 

  25. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM (1985) Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 315(6017):340–343

    Article  CAS  PubMed  Google Scholar 

  26. Küppers R, Dalla-Favera R (2001) Mechanisms of chromosomal translocation in B-cell lymphoma. Oncogene 20:5580–5594

    Article  PubMed  Google Scholar 

  27. Tsujimoto Y, Gorham J, Cossman J, Jaffe E, Croce CM (1985) The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229(4720):1390–1393

    Article  CAS  PubMed  Google Scholar 

  28. Ramiro AR, Jankovic M, Eisenreich T, Difilippantonio S, Chen-Kiang S, Muramatsu M, Honjo T, Nussenzweig A, Nussenzweig MC (2004) AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118(4):431–438

    Article  CAS  PubMed  Google Scholar 

  29. Robbiani DF, Bothmer A, Callen E, Reina-San-Martin B, Dorsett Y, Difilippantonio S, Bolland DJ, Chen HT, Corcoran AE, Nussenzweig A, Nussenzweig MC (2008) AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135(6):1028–1038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, Honjo T, Morse HC 3rd, Nussenzweig MC, Dalla-Favera R (2008) AID is required for germinal center-derived lymphomagenesis. Nat Genet 40(1):108–112

    Article  CAS  PubMed  Google Scholar 

  31. Takizawa M, Tolarova H, Li Z, Dubois W, Lim S, Callen E, Franco S, Mosaico M, Feigenbaum L, Alt FW, Nussenzweig A, Potter M, Casellas R (2008) AID expression levels determine the extent of cMyc oncogenic translocations and the incidence of B cell tumor development. J Exp Med 205(9):1949–1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Akasaka H, Akasaka T, Kurata M, Ueda C, Shimizu A, Uchiyama T, Ohno H (2000) Molecular anatomy of BCL6 translocations revealed by long-distance polymerase chain reaction-based assays. Cancer Res 60(9):2335–2341

    CAS  PubMed  Google Scholar 

  33. Chen W, Iida S, Louie DC, Dalla-Favera R, Chaganti RS (1998) Heterologous promoters fused to BCL6 by chromosomal translocations affecting band 3q27 cause its deregulated expression during B-cell differentiation. Blood 91(2):603–607

    CAS  PubMed  Google Scholar 

  34. Ye BH, Lista F, Lo Coco F, Knowles DM, Offit K, Chaganti RS, Dalla-Favera R (1993) Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large- cell lymphoma. Science 262(5134):747–750

    Article  CAS  PubMed  Google Scholar 

  35. Ye BH, Rao PH, Chaganti RS, Dalla-Favera R (1993) Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res 53(12):2732–2735

    CAS  PubMed  Google Scholar 

  36. Yoshida S, Kaneita Y, Aoki Y, Seto M, Mori S, Moriyama M (1999) Identification of heterologous translocation partner genes fused to the BCL6 gene in diffuse large B-cell lymphomas: 5′-RACE and LA – PCR analyses of biopsy samples. Oncogene 18(56):7994–7999

    Article  CAS  PubMed  Google Scholar 

  37. Baron BW, Nucifora G, McCabe N, Espinosa R 3rd, Le Beau MM, McKeithan TW (1993) Identification of the gene associated with the recurring chromosomal translocations t(3;14)(q27;q32) and t(3;22)(q27;q11) in B-cell lymphomas. Proc Natl Acad Sci U S A 90(11):5262–5266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kerckaert JP, Deweindt C, Tilly H, Quief S, Lecocq G, Bastard C (1993) LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet 5(1):66–70

    Article  CAS  PubMed  Google Scholar 

  39. Miki T, Kawamata N, Arai A, Ohashi K, Nakamura Y, Kato A, Hirosawa S, Aoki N (1994) Molecular cloning of the breakpoint for 3q27 translocation in B-cell lymphomas and leukemias. Blood 83(1):217–222

    CAS  PubMed  Google Scholar 

  40. Akasaka T, Miura I, Takahashi N, Akasaka H, Yonetani N, Ohno H, Fukuhara S, Okuma M (1997) A recurring translocation, t(3;6)(q27;p21), in non-Hodgkin’s lymphoma results in replacement of the 5′ regulatory region of BCL6 with a novel H4 histone gene. Cancer Res 57(1):7–12

    CAS  PubMed  Google Scholar 

  41. Neri A, Knowles DM, Greco A, McCormick F, Dalla-Favera R (1988) Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci U S A 85(23):9268–9272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Houldsworth J, Mathew S, Rao PH, Dyomina K, Louie DC, Parsa N, Offit K, Chaganti RS (1996) REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood 87(1):25–29

    CAS  PubMed  Google Scholar 

  43. Houldsworth J, Olshen AB, Cattoretti G, Donnelly GB, Teruya-Feldstein J, Qin J, Palanisamy N, Shen Y, Dyomina K, Petlakh M, Pan Q, Zelenetz AD, Dalla-Favera R, Chaganti RS (2004) Relationship between REL amplification, REL function, and clinical and biologic features in diffuse large B-cell lymphomas. Blood 103(5):1862–1868

    Article  CAS  PubMed  Google Scholar 

  44. Rao PH, Houldsworth J, Dyomina K, Parsa NZ, Cigudosa JC, Louie DC, Popplewell L, Offit K, Jhanwar SC, Chaganti RS (1998) Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood 92(1):234–240

    CAS  PubMed  Google Scholar 

  45. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Gascoyne RD, Muller-Hermelink HK, Smeland EB, Giltnane JM, Hurt EM, Zhao H, Averett L, Yang L, Wilson WH, Jaffe ES, Simon R, Klausner RD, Powell J, Duffey PL, Longo DL, Greiner TC, Weisenburger DD, Sanger WG, Dave BJ, Lynch JC, Vose J, Armitage JO, Montserrat E, Lopez-Guillermo A, Grogan TM, Miller TP, LeBlanc M, Ott G, Kvaloy S, Delabie J, Holte H, Krajci P, Stokke T, Staudt LM (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346(25):1937–1947

    Article  PubMed  Google Scholar 

  46. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E, Chapuy B, Takeyama K, Neuberg D, Golub TR, Kutok JL, Shipp MA (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–3277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q, Chadburn A, Rajewsky K, Tarakhovsky A, Pasqualucci L, Dalla-Favera R (2010) BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18(6):568–579

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV, Aster JC, Murty VV, Shipp MA, Dalla-Favera R (2006) Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 203(2):311–317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Tam W, Gomez M, Chadburn A, Lee JW, Chan WC, Knowles DM (2006) Mutational analysis of PRDM1 indicates a tumor-suppressor role in diffuse large B-cell lymphomas. Blood 107(10):4090–4100

    Article  CAS  PubMed  Google Scholar 

  50. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q, Bertoni F, Ponzoni M, Scandurra M, Califano A, Bhagat G, Chadburn A, Dalla-Favera R, Pasqualucci L (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459(7247):717–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K, Niwa A, Chen Y, Nakazaki K, Nomoto J, Asakura Y, Muto S, Tamura A, Iio M, Akatsuka Y, Hayashi Y, Mori H, Igarashi T, Kurokawa M, Chiba S, Mori S, Ishikawa Y, Okamoto K, Tobinai K, Nakagama H, Nakahata T, Yoshino T, Kobayashi Y, Ogawa S (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459(7247):712–716

    Article  CAS  PubMed  Google Scholar 

  52. Novak U, Rinaldi A, Kwee I, Nandula SV, Rancoita PM, Compagno M, Cerri M, Rossi D, Murty VV, Zucca E, Gaidano G, Dalla-Favera R, Pasqualucci L, Bhagat G, Bertoni F (2009) The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113(20):4918–4921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schmitz R, Hansmann ML, Bohle V, Martin-Subero JI, Hartmann S, Mechtersheimer G, Klapper W, Vater I, Giefing M, Gesk S, Stanelle J, Siebert R, Kuppers R (2009) TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J Exp Med 206(5):981–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, Kasper LH, Lerach S, Tang H, Ma J, Rossi D, Chadburn A, Murty VV, Mullighan CG, Gaidano G, Rabadan R, Brindle PK, Dalla-Favera R (2011) Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471(7337):189–195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, Jackman S, Krzywinski M, Scott DW, Trinh DL, Tamura-Wells J, Li S, Firme MR, Rogic S, Griffith M, Chan S, Yakovenko O, Meyer IM, Zhao EY, Smailus D, Moksa M, Chittaranjan S, Rimsza L, Brooks-Wilson A, Spinelli JJ, Ben-Neriah S, Meissner B, Woolcock B, Boyle M, McDonald H, Tam A, Zhao Y, Delaney A, Zeng T, Tse K, Butterfield Y, Birol I, Holt R, Schein J, Horsman DE, Moore R, Jones SJ, Connors JM, Hirst M, Gascoyne RD, Marra MA (2011) Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476(7360):298–303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Pasqualucci L, Trifonov V, Fabbri G, Ma J, Rossi D, Chiarenza A, Wells VA, Grunn A, Messina M, Elliot O, Chan J, Bhagat G, Chadburn A, Gaidano G, Mullighan CG, Rabadan R, Dalla-Favera R (2011) Analysis of the coding genome of diffuse large B-cell lymphoma. Nat Genet 43(9):830–837

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M, Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343(26):1910–1916

    Article  CAS  PubMed  Google Scholar 

  59. Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R (2001) Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia. Blood 97(7):2098–2104

    Article  CAS  PubMed  Google Scholar 

  60. Fabbri G, Khiabanian H, Holmes AB, Wang J, Messina M, Mullighan CG, Pasqualucci L, Rabadan R, Dalla-Favera R (2013) Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome. J Exp Med 210(11):2273–2288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB, Ouillette P, Trifonov V, Rossi D, Tabbo F, Ponzoni M, Chadburn A, Murty VV, Bhagat G, Gaidano G, Inghirami G, Malek SN, Rabadan R, Dalla-Favera R (2014) Genetics of follicular lymphoma transformation. Cell Rep 6(1):130–140

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Lenz G, Wright GW, Emre NC, Kohlhammer H, Dave SS, Davis RE, Carty S, Lam LT, Shaffer AL, Xiao W, Powell J, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Campo E, Jaffe ES, Delabie J, Smeland EB, Rimsza LM, Fisher RI, Weisenburger DD, Chan WC, Staudt LM (2008) Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc Natl Acad Sci U S A 105(36):13520–13525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Jares P, Colomer D, Campo E (2007) Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 7(10):750–762

    Article  CAS  PubMed  Google Scholar 

  64. Muller PA, Vousden KH (2013) p53 mutations in cancer. Nat Cell Biol 15(1):2–8

    Article  CAS  PubMed  Google Scholar 

  65. Gaidano G, Ballerini P, Gong JZ, Inghirami G, Neri A, Newcomb EW, Magrath IT, Knowles DM, Dalla-Favera R (1991) p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 88(12):5413–5417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Lo Coco F, Gaidano G, Louie DC, Offit K, Chaganti RS, Dalla-Favera R (1993) p53 mutations are associated with histologic transformation of follicular lymphoma. Blood 82(8):2289–2295

    CAS  PubMed  Google Scholar 

  67. Neuberger MS (2008) Antibody diversification by somatic mutation: from Burnet onwards. Immunol Cell Biol 86(2):124–132

    Article  CAS  PubMed  Google Scholar 

  68. Gordon MS, Kanegai CM, Doerr JR, Wall R (2003) Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mb1 (Igalpha, CD79a). Proc Natl Acad Sci U S A 100(7):4126–4131

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Pasqualucci L, Migliazza A, Fracchiolla N, William C, Neri A, Baldini L, Chaganti RS, Klein U, Kuppers R, Rajewsky K, Dalla-Favera R (1998) BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A 95(20):11816–11821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Shen HM, Peters A, Baron B, Zhu X, Storb U (1998) Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280(5370):1750–1752

    Article  CAS  PubMed  Google Scholar 

  71. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R (2001) Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412(6844):341–346

    Article  CAS  PubMed  Google Scholar 

  72. Cerri M, Capello D, Muti G, Rambaldi A, Paulli M, Gloghini A, Berra E, Deambrogi C, Rossi D, Franceschetti S, Conconi A, Morra E, Pasqualucci L, Carbone A, Gaidano G (2004) Aberrant somatic hypermutation in post-transplant lymphoproliferative disorders. Br J Haematol 127(3):362–364

    Article  CAS  PubMed  Google Scholar 

  73. Deutsch AJ, Aigelsreiter A, Staber PB, Beham A, Linkesch W, Guelly C, Brezinschek RI, Fruhwirth M, Emberger W, Buettner M, Beham-Schmid C, Neumeister P (2007) MALT lymphoma and extranodal diffuse large B-cell lymphoma are targeted by aberrant somatic hypermutation. Blood 109(8):3500–3504

    Article  CAS  PubMed  Google Scholar 

  74. Gaidano G, Pasqualucci L, Capello D, Berra E, Deambrogi C, Rossi D, Larocca LM, Gloghini A, Carbone A, Dalla-Favera R (2003) Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood 102:1833–1841

    Article  CAS  PubMed  Google Scholar 

  75. Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, Deckert M (2004) Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 103(5):1869–1875

    Article  CAS  PubMed  Google Scholar 

  76. Vakiani E, Basso K, Klein U, Mansukhani MM, Narayan G, Smith PM, Murty VV, Dalla-Favera R, Pasqualucci L, Bhagat G (2008) Genetic and phenotypic analysis of B-cell post-transplant lymphoproliferative disorders provides insights into disease biology. Hematol Oncol 26(4):199–211

    Article  CAS  PubMed  Google Scholar 

  77. Storb U, Peters A, Klotz E, Kim N, Shen HM, Hackett J, Rogerson B, Martin TE (1998) Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunol Rev 162:153–160

    Article  CAS  PubMed  Google Scholar 

  78. Tsujimoto Y, Yunis J, Onorato-Showe L, Erikson J, Nowell PC, Croce CM (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224(4656):1403–1406

    Article  CAS  PubMed  Google Scholar 

  79. Erikson J, Finan J, Tsujimoto Y, Nowell PC, Croce CM (1984) The chromosome 14 breakpoint in neoplastic B cells with the t(11;14) translocation involves the immunoglobulin heavy chain locus. Proc Natl Acad Sci U S A 81(13):4144–4148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Motokura T, Bloom T, Kim HG, Juppner H, Ruderman JV, Kronenberg HM, Arnold A (1991) A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature 350(6318):512–515

    Article  CAS  PubMed  Google Scholar 

  81. Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL, Arnold A (1991) PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci U S A 88(21):9638–9642

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Withers DA, Harvey RC, Faust JB, Melnyk O, Carey K, Meeker TC (1991) Characterization of a candidate bcl-1 gene. Mol Cell Biol 11(10):4846–4853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Seto M, Yamamoto K, Iida S, Akao Y, Utsumi KR, Kubonishi I, Miyoshi I, Ohtsuki T, Yawata Y, Namba M et al (1992) Gene rearrangement and overexpression of PRAD1 in lymphoid malignancy with t(11;14)(q13;q32) translocation. Oncogene 7(7):1401–1406

    CAS  PubMed  Google Scholar 

  84. Komatsu H, Iida S, Yamamoto K, Mikuni C, Nitta M, Takahashi T, Ueda R, Seto M (1994) A variant chromosome translocation at 11q13 identifying PRAD1/cyclin D1 as the BCL-1 gene. Blood 84(4):1226–1231

    CAS  PubMed  Google Scholar 

  85. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, Liu H, Rosenwald A, Muller-Hermelink HK, Ott G, Chan WC, Greiner TC, Weisenburger DD, Vose J, Armitage JO, Gascoyne RD, Connors JM, Campo E, Montserrat E, Bosch F, Smeland EB, Kvaloy S, Holte H, Delabie J, Fisher RI, Grogan TM, Miller TP, Wilson WH, Jaffe ES, Staudt LM (2007) Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 109(11):4599–4606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM (1994) Cyclin D1 transgene impedes lymphocyte maturation and collaborates in lymphomagenesis with the myc gene. Embo J 13(9):2124–2130

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T (1994) Cyclin D1/bcl-1 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. Embo J 13(15):3487–3495

    PubMed Central  CAS  PubMed  Google Scholar 

  88. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. World Health Organization of Tumours. International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  89. Schaffner C, Idler I, Stilgenbauer S, Dohner H, Lichter P (2000) Mantle cell lymphoma is characterized by inactivation of the ATM gene. Proc Natl Acad Sci U S A 97(6):2773–2778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Louie DC, Offit K, Jaslow R, Parsa NZ, Murty VV, Schluger A, Chaganti RS (1995) p53 overexpression as a marker of poor prognosis in mantle cell lymphomas with t(11;14)(q13;q32). Blood 86(8):2892–2899

    CAS  PubMed  Google Scholar 

  91. Pinyol M, Hernandez L, Cazorla M, Balbin M, Jares P, Fernandez PL, Montserrat E, Cardesa A, Lopez-Otin C, Campo E (1997) Deletions and loss of expression of p16INK4a and p21Waf1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 89(1):272–280

    CAS  PubMed  Google Scholar 

  92. Bea S, Valdes-Mas R, Navarro A, Salaverria I, Martin-Garcia D, Jares P, Gine E, Pinyol M, Royo C, Nadeu F, Conde L, Juan M, Clot G, Vizan P, Di Croce L, Puente DA, Lopez-Guerra M, Moros A, Roue G, Aymerich M, Villamor N, Colomo L, Martinez A, Valera A, Martin-Subero JI, Amador V, Hernandez L, Rozman M, Enjuanes A, Forcada P, Muntanola A, Hartmann EM, Calasanz MJ, Rosenwald A, Ott G, Hernandez-Rivas JM, Klapper W, Siebert R, Wiestner A, Wilson WH, Colomer D, Lopez-Guillermo A, Lopez-Otin C, Puente XS, Campo E (2013) Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc Natl Acad Sci U S A 110(45):18250–18255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Kridel R, Meissner B, Rogic S, Boyle M, Telenius A, Woolcock B, Gunawardana J, Jenkins C, Cochrane C, Ben-Neriah S, Tan K, Morin RD, Opat S, Sehn LH, Connors JM, Marra MA, Weng AP, Steidl C, Gascoyne RD (2012) Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119(9):1963–1971

    Article  CAS  PubMed  Google Scholar 

  94. Bea S, Tort F, Pinyol M, Puig X, Hernandez L, Hernandez S, Fernandez PL, van Lohuizen M, Colomer D, Campo E (2001) BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61(6):2409–2412

    CAS  PubMed  Google Scholar 

  95. Chapman CJ, Mockridge CI, Rowe M, Rickinson AB, Stevenson FK (1995) Analysis of VH genes used by neoplastic B cells in endemic Burkitt’s lymphoma shows somatic hypermutation and intraclonal heterogeneity. Blood 85(8):2176–2181

    CAS  PubMed  Google Scholar 

  96. Chapman CJ, Zhou JX, Gregory C, Rickinson AB, Stevenson FK (1996) VH and VL gene analysis in sporadic Burkitt’s lymphoma shows somatic hypermutation, intraclonal heterogeneity, and a role for antigen selection. Blood 88(9):3562–3568

    CAS  PubMed  Google Scholar 

  97. Tamaru J, Hummel M, Marafioti T, Kalvelage B, Leoncini L, Minacci C, Tosi P, Wright D, Stein H (1995) Burkitt’s lymphomas express VH genes with a moderate number of antigen-selected somatic mutations. Am J Pathol 147(5):1398–1407

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, Greiner TC, Weisenburger DD, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Delabie J, Rimsza LM, Braziel RM, Grogan TM, Campo E, Jaffe ES, Dave BJ, Sanger W, Bast M, Vose JM, Armitage JO, Connors JM, Smeland EB, Kvaloy S, Holte H, Fisher RI, Miller TP, Montserrat E, Wilson WH, Bahl M, Zhao H, Yang L, Powell J, Simon R, Chan WC, Staudt LM (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354(23):2431–2442

    Article  CAS  PubMed  Google Scholar 

  99. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF, Bernd HW, Cogliatti SB, Dierlamm J, Feller AC, Hansmann ML, Haralambieva E, Harder L, Hasenclever D, Kuhn M, Lenze D, Lichter P, Martin-Subero JI, Moller P, Muller-Hermelink HK, Ott G, Parwaresch RM, Pott C, Rosenwald A, Rosolowski M, Schwaenen C, Sturzenhofecker B, Szczepanowski M, Trautmann H, Wacker HH, Spang R, Loeffler M, Trumper L, Stein H, Siebert R (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354(23):2419–2430

    Article  CAS  PubMed  Google Scholar 

  100. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM (1983) Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219(4587):963–967

    Article  CAS  PubMed  Google Scholar 

  102. Dalla-Favera R (1993) Chromosomal translocations involving the c-myc oncogene in lymphoid neoplasia. In: Kirsch IR (ed) The causes and consequences of chromosomal aberrations. CRC Press, Boca Raton, p 312

    Google Scholar 

  103. Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79(24):7837–7841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  104. Davis M, Malcolm S, Rabbitts TH (1984) Chromosome translocation can occur on either side of the c-myc oncogene in Burkitt lymphoma cells. Nature 308(5956):286–288

    Article  CAS  PubMed  Google Scholar 

  105. Neri A, Barriga F, Knowles DM, Magrath IT, Dalla-Favera R (1988) Different regions of the immunoglobulin heavy-chain locus are involved in chromosomal translocations in distinct pathogenetic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 85(8):2748–2752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  106. Pelicci PG, Knowles DM 2nd, Magrath I, Dalla-Favera R (1986) Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci U S A 83(9):2984–2988

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  107. ar-Rushdi A, Nishikura K, Erikson J, Watt R, Rovera G, Croce CM (1983) Differential expression of the translocated and the untranslocated c-myc oncogene in Burkitt lymphoma. Science 222(4622):390–393

    Article  CAS  PubMed  Google Scholar 

  108. Hayday AC, Gillies SD, Saito H, Wood C, Wiman K, Hayward WS, Tonegawa S (1984) Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature 307(5949):334–340

    Article  CAS  PubMed  Google Scholar 

  109. Rabbitts TH, Forster A, Baer R, Hamlyn PH (1983) Transcription enhancer identified near the human C mu immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma. Nature 306(5945):806–809

    Article  CAS  PubMed  Google Scholar 

  110. Dominguez-Sola D, Victora GD, Ying CY, Phan RT, Saito M, Nussenzweig MC, Dalla-Favera R (2012) The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry. Nat Immunol 13(11):1083–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  111. Cesarman E, Dalla-Favera R, Bentley D, Groudine M (1987) Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238(4831):1272–1275

    Article  CAS  PubMed  Google Scholar 

  112. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I (1993) Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytomas. Nat Genet 5(1):56–61

    Article  CAS  PubMed  Google Scholar 

  113. Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I (1994) Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood 84(3):883–888

    CAS  PubMed  Google Scholar 

  114. Gu W, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R (1994) Binding and suppression of the Myc transcriptional activation domain by p107. Science 264(5156):251–254

    Article  CAS  PubMed  Google Scholar 

  115. Gregory MA, Hann SR (2000) c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol 20(7):2423–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  116. Hemann MT, Bric A, Teruya-Feldstein J, Herbst A, Nilsson JA, Cordon-Cardo C, Cleveland JL, Tansey WP, Lowe SW (2005) Evasion of the p53 tumour surveillance network by tumour-derived MYC mutants. Nature 436(7052):807–811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  117. Grandori C, Cowley SM, James LP, Eisenman RN (2000) The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 16:653–699

    Article  CAS  PubMed  Google Scholar 

  118. Meyer N, Penn LZ (2008) Reflecting on 25 years with MYC. Nat Rev Cancer 8(12):976–990

    Article  CAS  PubMed  Google Scholar 

  119. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264

    Article  CAS  PubMed  Google Scholar 

  120. Felsher DW, Bishop JM (1999) Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A 96(7):3940–3944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, Palmiter RD, Brinster RL (1985) The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318(6046):533–538

    Article  CAS  PubMed  Google Scholar 

  122. Kovalchuk AL, Qi CF, Torrey TA, Taddesse-Heath L, Feigenbaum L, Park SS, Gerbitz A, Klobeck G, Hoertnagel K, Polack A, Bornkamm GW, Janz S, Morse HC 3rd (2000) Burkitt lymphoma in the mouse. J Exp Med 192(8):1183–1190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Sander S, Calado DP, Srinivasan L, Kochert K, Zhang B, Rosolowski M, Rodig SJ, Holzmann K, Stilgenbauer S, Siebert R, Bullinger L, Rajewsky K (2012) Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer Cell 22(2):167–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  124. Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M, Wright G, Shaffer AL, Hodson DJ, Buras E, Liu X, Powell J, Yang Y, Xu W, Zhao H, Kohlhammer H, Rosenwald A, Kluin P, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Ogwang MD, Reynolds SJ, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pittaluga S, Wilson W, Waldmann TA, Rowe M, Mbulaiteye SM, Rickinson AB, Staudt LM (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  125. Martinez-Delgado B, Robledo M, Arranz E, Osorio A, Garcia MJ, Echezarreta G, Rivas C, Benitez J (1998) Hypermethylation of p15/ink4b/MTS2 gene is differentially implicated among non-Hodgkin’s lymphomas. Leukemia 12(6):937–941

    Article  CAS  PubMed  Google Scholar 

  126. Gaidano G, Hauptschein RS, Parsa NZ, Offit K, Rao PH, Lenoir G, Knowles DM, Chaganti RS, Dalla-Favera R (1992) Deletions involving two distinct regions of 6q in B-cell non-Hodgkin lymphoma. Blood 80(7):1781–1787

    CAS  PubMed  Google Scholar 

  127. zur Hausen H, Schulte-Holthausen H, Klein G, Henle W, Henle G, Clifford P, Santesson L (1970) EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature 228(276):1056–1058

    Article  CAS  PubMed  Google Scholar 

  128. Lombardi L, Newcomb EW, Dalla-Favera R (1987) Pathogenesis of Burkitt lymphoma: expression of an activated c-myc oncogene causes the tumorigenic conversion of EBV-infected human B lymphoblasts. Cell 49(2):161–170

    Article  CAS  PubMed  Google Scholar 

  129. Neri A, Barriga F, Inghirami G, Knowles DM, Neequaye J, Magrath IT, Dalla-Favera R (1991) Epstein-Barr virus infection precedes clonal expansion in Burkitt’s and acquired immunodeficiency syndrome-associated lymphoma. Blood 77(5):1092–1095

    CAS  PubMed  Google Scholar 

  130. Prevot S, Hamilton-Dutoit S, Audouin J, Walter P, Pallesen G, Diebold J (1992) Analysis of African Burkitt’s and high-grade B cell non-Burkitt’s lymphoma for Epstein-Barr virus genomes using in situ hybridization. Br J Haematol 80(1):27–32

    Article  CAS  PubMed  Google Scholar 

  131. Thorley-Lawson DA, Allday MJ (2008) The curious case of the tumour virus: 50 years of Burkitt’s lymphoma. Nat Rev Microbiol 6(12):913–924

    Article  CAS  PubMed  Google Scholar 

  132. Kridel R, Sehn LH, Gascoyne RD (2012) Pathogenesis of follicular lymphoma. J Clin Invest 122(10):3424–3431

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Montoto S, Fitzgibbon J (2011) Transformation of indolent B-cell lymphomas. J Clin Oncol 29(14):1827–1834

    Article  PubMed  Google Scholar 

  134. Bakhshi A, Jensen JP, Goldman P, Wright JJ, McBride OW, Epstein AL, Korsmeyer SJ (1985) Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41(3):899–906

    Article  CAS  PubMed  Google Scholar 

  135. Cleary ML, Sklar J (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci U S A 82(21):7439–7443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  136. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47(1):19–28

    Article  CAS  PubMed  Google Scholar 

  137. Ott G, Katzenberger T, Lohr A, Kindelberger S, Rudiger T, Wilhelm M, Kalla J, Rosenwald A, Muller JG, Ott MM, Muller-Hermelink HK (2002) Cytomorphologic, immunohistochemical, and cytogenetic profiles of follicular lymphoma: 2 types of follicular lymphoma grade 3. Blood 99(10):3806–3812

    Article  CAS  PubMed  Google Scholar 

  138. Tsujimoto Y, Finger LR, Yunis J, Nowell PC, Croce CM (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226(4678):1097–1099

    Article  CAS  PubMed  Google Scholar 

  139. Cleary ML, Galili N, Sklar J (1986) Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med 164(1):315–320

    Article  CAS  PubMed  Google Scholar 

  140. Graninger WB, Seto M, Boutain B, Goldman P, Korsmeyer SJ (1987) Expression of Bcl-2 and Bcl-2-Ig fusion transcripts in normal and neoplastic cells. J Clin Invest 80(5):1512–1515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Ngan BY, Chen-Levy Z, Weiss LM, Warnke RA, Cleary ML (1988) Expression in non-Hodgkin’s lymphoma of the bcl-2 protein associated with the t(14;18) chromosomal translocation. N Engl J Med 318(25):1638–1644

    Article  CAS  PubMed  Google Scholar 

  142. Petrovic AS, Young RL, Hilgarth B, Ambros P, Korsmeyer SJ, Jaeger U (1998) The Ig heavy chain 3′ end confers a posttranscriptional processing advantage to Bcl-2-IgH fusion RNA in t(14;18) lymphoma. Blood 91(10):3952–3961

    CAS  PubMed  Google Scholar 

  143. Saito M, Novak U, Piovan E, Basso K, Sumazin P, Schneider C, Crespo M, Shen Q, Bhagat G, Califano A, Chadburn A, Pasqualucci L, Dalla-Favera R (2009) BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 106(27):11294–11299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Buchonnet G, Jardin F, Jean N, Bertrand P, Parmentier F, Tison S, Lepretre S, Contentin N, Lenain P, Stamatoullas-Bastard A, Tilly H, Bastard C (2002) Distribution of BCL2 breakpoints in follicular lymphoma and correlation with clinical features: specific subtypes or same disease? Leukemia 16(9):1852–1856

    Article  CAS  PubMed  Google Scholar 

  145. Yano T, Jaffe ES, Longo DL, Raffeld M (1992) MYC rearrangements in histologically progressed follicular lymphomas. Blood 80(3):758–767

    CAS  PubMed  Google Scholar 

  146. Ichikawa A, Hotta T, Takagi N, Tsushita K, Kinoshita T, Nagai H, Murakami Y, Hayashi K, Saito H (1992) Mutations of p53 gene and their relation to disease progression in B-cell lymphoma. Blood 79(10):2701–2707

    CAS  PubMed  Google Scholar 

  147. O’Shea D, O’Riain C, Taylor C, Waters R, Carlotti E, Macdougall F, Gribben J, Rosenwald A, Ott G, Rimsza LM, Smeland EB, Johnson N, Campo E, Greiner TC, Chan WC, Gascoyne RD, Wright G, Staudt LM, Lister TA, Fitzgibbon J (2008) The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 112(8):3126–3129

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  148. Sander CA, Yano T, Clark HM, Harris C, Longo DL, Jaffe ES, Raffeld M (1993) p53 mutation is associated with progression in follicular lymphomas. Blood 82(7):1994–2004

    CAS  PubMed  Google Scholar 

  149. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Staudt LM et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511

    Article  CAS  PubMed  Google Scholar 

  150. Wright G, Tan B, Rosenwald A, Hurt EH, Wiestner A, Staudt LM (2003) A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma. Proc Natl Acad Sci U S A 100(17):9991–9996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L, Kurtin P, Dal Cin P, Ladd C, Feuerhake F, Aguiar RC, Li S, Salles G, Berger F, Jing W, Pinkus GS, Habermann T, Dalla-Favera R, Harris NL, Aster JC, Golub TR, Shipp MA (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102(12):3871–3879

    Article  CAS  PubMed  Google Scholar 

  152. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD, Chan WC, Zhao T, Haioun C, Greiner TC, Weisenburger DD, Lynch JC, Vose J, Armitage JO, Smeland EB, Kvaloy S, Holte H, Delabie J, Campo E, Montserrat E, Lopez-Guillermo A, Ott G, Muller-Hermelink HK, Connors JM, Braziel R, Grogan TM, Fisher RI, Miller TP, LeBlanc M, Chiorazzi M, Zhao H, Yang L, Powell J, Wilson WH, Jaffe ES, Simon R, Klausner RD, Staudt LM (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198(6):851–862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  153. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC (2012) Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 120(11):2240–2248

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C, Cruz-Gordillo P, Knoechel B, Asmann YW, Slager SL, Novak AJ, Dogan A, Ansell SM, Link BK, Zou L, Gould J, Saksena G, Stransky N, Rangel-Escareno C, Fernandez-Lopez JC, Hidalgo-Miranda A, Melendez-Zajgla J, Hernandez-Lemus E, Schwarz-Cruz y Celis A, Imaz-Rosshandler I, Ojesina AI, Jung J, Pedamallu CS, Lander ES, Habermann TM, Cerhan JR, Shipp MA, Getz G, Golub TR (2012) Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci U S A 109(10):3879–3884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  155. Lo Coco F, Ye BH, Lista F, Corradini P, Offit K, Knowles DM, Chaganti RS, Dalla-Favera R (1994) Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood 83(7):1757–1759

    CAS  PubMed  Google Scholar 

  156. Offit K, Jhanwar S, Ebrahim SA, Filippa D, Clarkson BD, Chaganti RS (1989) t(3;22)(q27;q11): a novel translocation associated with diffuse non-Hodgkin’s lymphoma. Blood 74(6):1876–1879

    CAS  PubMed  Google Scholar 

  157. Offit K, Wong G, Filippa DA, Tao Y, Chaganti RS (1991) Cytogenetic analysis of 434 consecutively ascertained specimens of non-Hodgkin’s lymphoma: clinical correlations. Blood 77(7):1508–1515

    CAS  PubMed  Google Scholar 

  158. Iqbal J, Greiner TC, Patel K, Dave BJ, Smith L, Ji J, Wright G, Sanger WG, Pickering DL, Jain S, Horsman DE, Shen Y, Fu K, Weisenburger DD, Hans CP, Campo E, Gascoyne RD, Rosenwald A, Jaffe ES, Delabie J, Rimsza L, Ott G, Muller-Hermelink HK, Connors JM, Vose JM, McKeithan T, Staudt LM, Chan WC (2007) Distinctive patterns of BCL6 molecular alterations and their functional consequences in different subgroups of diffuse large B-cell lymphoma. Leukemia 21(11):2332–2343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  159. Ye BH, Chaganti S, Chang CC, Niu H, Corradini P, Chaganti RS, Dalla-Favera R (1995) Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. Embo J 14(24):6209–6217

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Ying CY, Dominguez-Sola D, Fabi M, Lorenz IC, Hussein S, Bansal M, Califano A, Pasqualucci L, Basso K, Dalla-Favera R (2013) MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat Immunol 14(10):1084–1092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Bereshchenko OR, Gu W, Dalla-Favera R (2002) Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32(4):606–613

    Article  CAS  PubMed  Google Scholar 

  162. Duan S, Cermak L, Pagan JK, Rossi M, Martinengo C, di Celle PF, Chapuy B, Shipp M, Chiarle R, Pagano M (2012) FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 481(7379):90–93

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Cattoretti G, Pasqualucci L, Ballon G, Tam W, Nandula SV, Shen Q, Mo T, Murty VV, Dalla-Favera R (2005) Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7(5):445–455

    Article  CAS  PubMed  Google Scholar 

  164. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV, Dominguez-Sola D, Pasqualucci L, Dalla-Favera R (2011) Combined genetic inactivation of beta2-microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20(6):728–740

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  165. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P, Johnson NA, Zhao Y, Telenius A, Neriah SB, McPherson A, Meissner B, Okoye UC, Diepstra A, van den Berg A, Sun M, Leung G, Jones SJ, Connors JM, Huntsman DG, Savage KJ, Rimsza LM, Horsman DE, Staudt LM, Steidl U, Marra MA, Gascoyne RD (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471(7338):377–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Khodabakhshi AH, Morin RD, Fejes AP, Mungall AJ, Mungall KL, Bolger-Munro M, Johnson NA, Connors JM, Gascoyne RD, Marra MA, Birol I, Jones SJ (2012) Recurrent targets of aberrant somatic hypermutation in lymphoma. Oncotarget 3(11):1308–1319

    Article  PubMed Central  PubMed  Google Scholar 

  167. Iqbal J, Sanger WG, Horsman DE, Rosenwald A, Pickering DL, Dave B, Dave S, Xiao L, Cao K, Zhu Q, Sherman S, Hans CP, Weisenburger DD, Greiner TC, Gascoyne RD, Ott G, Muller-Hermelink HK, Delabie J, Braziel RM, Jaffe ES, Campo E, Lynch JC, Connors JM, Vose JM, Armitage JO, Grogan TM, Staudt LM, Chan WC (2004) BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am J Pathol 165(1):159–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Kawasaki C, Ohshim K, Suzumiya J, Kanda M, Tsuchiya T, Tamura K, Kikuchi M (2001) Rearrangements of bcl-1, bcl-2, bcl-6, and c-myc in diffuse large B-cell lymphomas. Leuk Lymphoma 42(5):1099–1106

    Article  CAS  PubMed  Google Scholar 

  169. Ladanyi M, Offit K, Jhanwar SC, Filippa DA, Chaganti RS (1991) MYC rearrangement and translocations involving band 8q24 in diffuse large cell lymphomas. Blood 77(5):1057–1063

    CAS  PubMed  Google Scholar 

  170. Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F, Yap D, Humphries RK, Griffith OL, Shah S, Zhu H, Kimbara M, Shashkin P, Charlot JF, Tcherpakov M, Corbett R, Tam A, Varhol R, Smailus D, Moksa M, Zhao Y, Delaney A, Qian H, Birol I, Schein J, Moore R, Holt R, Horsman DE, Connors JM, Jones S, Aparicio S, Hirst M, Gascoyne RD, Marra MA (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat Genet 42(2):181–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  171. Pfeifer M, Grau M, Lenze D, Wenzel SS, Wolf A, Wollert-Wulf B, Dietze K, Nogai H, Storek B, Madle H, Dorken B, Janz M, Dirnhofer S, Lenz P, Hummel M, Tzankov A, Lenz G (2013) PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A 110(30):12420–12425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Pasqualucci L, Migliazza A, Basso K, Houldsworth J, Chaganti RS, Dalla-Favera R (2003) Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101(8):2914–2923

    Article  CAS  PubMed  Google Scholar 

  173. Wang X, Li Z, Naganuma A, Ye BH (2002) Negative autoregulation of BCL-6 is bypassed by genetic alterations in diffuse large B cell lymphomas. Proc Natl Acad Sci U S A 99(23):15018–15023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  174. Capello D, Vitolo U, Pasqualucci L, Quattrone S, Migliaretti G, Fassone L, Ariatti C, Vivenza D, Gloghini A, Pastore C, Lanza C, Nomdedeu J, Botto B, Freilone R, Buonaiuto D, Zagonel V, Gallo E, Palestro G, Saglio G, Dalla-Favera R, Carbone A, Gaidano G (2000) Distribution and pattern of BCL-6 mutations throughout the spectrum of B-cell neoplasia. Blood 95(2):651–659

    CAS  PubMed  Google Scholar 

  175. Migliazza A, Martinotti S, Chen W, Fusco C, Ye BH, Knowles DM, Offit K, Chaganti RS, Dalla-Favera R (1995) Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A 92(26):12520–12524

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  176. Shen HM, Michael N, Kim N, Storb U (2000) The TATA binding protein, c-Myc and survivin genes are not somatically hypermutated, while Ig and BCL6 genes are hypermutated in human memory B cells. Int Immunol 12(7):1085–1093

    Article  CAS  PubMed  Google Scholar 

  177. Saito M, Gao J, Basso K, Kitagawa Y, Smith PM, Bhagat G, Pernis A, Pasqualucci L, Dalla-Favera R (2007) A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell 12(3):280–292

    Article  CAS  PubMed  Google Scholar 

  178. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW, Dave SS, Zhao H, Xu W, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Chan WC, Staudt LM (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319(5870):1676–1679

    Article  CAS  PubMed  Google Scholar 

  179. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim KH, Kohlhammer H, Xu W, Yang Y, Zhao H, Shaffer AL, Romesser P, Wright G, Powell J, Rosenwald A, Muller-Hermelink HK, Ott G, Gascoyne RD, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Staudt LM (2011) Oncogenically active MYD88 mutations in human lymphoma. Nature 470:115–119

    Google Scholar 

  180. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, Kohlhammer H, Lamy L, Zhao H, Yang Y, Xu W, Shaffer AL, Wright G, Xiao W, Powell J, Jiang JK, Thomas CJ, Rosenwald A, Ott G, Muller-Hermelink HK, Gascoyne RD, Connors JM, Johnson NA, Rimsza LM, Campo E, Jaffe ES, Wilson WH, Delabie J, Smeland EB, Fisher RI, Braziel RM, Tubbs RR, Cook JR, Weisenburger DD, Chan WC, Pierce SK, Staudt LM (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463(7277):88–92

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  181. Shapiro-Shelef M, Lin KI, McHeyzer-Williams LJ, Liao J, McHeyzer-Williams MG, Calame K (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19(4):607–620

    Article  CAS  PubMed  Google Scholar 

  182. Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, Boller S, Cittaro D, Bozek M, Iqbal S, Matthews J, Wrench D, Marzec J, Tawana K, Popov N, O’Riain C, O’Shea D, Carlotti E, Davies A, Lawrie CH, Matolcsy A, Calaminici M, Norton A, Byers RJ, Mein C, Stupka E, Lister TA, Lenz G, Montoto S, Gribben JG, Fan Y, Grosschedl R, Chelala C, Fitzgibbon J (2014) Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 46(2):176–181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Joos S, Kupper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M, Marynen P, Moller P, Pfreundschuh M, Trumper L, Lichter P (2000) Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60(3):549–552

    CAS  PubMed  Google Scholar 

  184. Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, Xu W, Zhao H, Yang Y, Lamy L, Davis RE, Xiao W, Powell J, Maloney D, Thomas CJ, Moller P, Rosenwald A, Ott G, Muller-Hermelink HK, Savage K, Connors JM, Rimsza LM, Campo E, Jaffe ES, Delabie J, Smeland EB, Weisenburger DD, Chan WC, Gascoyne RD, Levens D, Staudt LM (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18(6):590–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  185. Kuppers R (2009) The biology of Hodgkin’s lymphoma. Nat Rev Cancer 9(1):15–27

    Article  PubMed  CAS  Google Scholar 

  186. Gunawardana J, Chan FC, Telenius A, Woolcock B, Kridel R, Tan KL, Ben-Neriah S, Mottok A, Lim RS, Boyle M, Rogic S, Rimsza LM, Guiter C, Leroy K, Gaulard P, Haioun C, Marra MA, Savage KJ, Connors JM, Shah SP, Gascoyne RD, Steidl C (2014) Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 46(4):329–335

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Dalla-Favera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fangazio, M., Pasqualucci, L., Dalla-Favera, R. (2015). Chromosomal Translocations in B Cell Lymphomas. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_9

Download citation

Publish with us

Policies and ethics