Skip to main content
  • 954 Accesses

Abstract

The applications of information on copy number changes in cancer have been twofold. Recognizing that regions of copy number gain signalled the location of oncogenes and that, similarly, copy number loss signalled the location of tumour suppressor genes, has resulted in screening of the minimally defined regions for candidate genes involved in tumourigenesis. Once candidates emerged, other evidence of their role in tumours was sought, by functional assays for example, and a huge literature built up describing these gene classes. Even without knowledge of how the genes acted in the development of tumours, the second application has been to correlate the chromosomal abnormalities with various clinical parameters, again resulting in many thousands of publications, although to date the translation of laboratory observations into clinical practice is still not widespread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caspersson T, Zech L, Johansson C (1970) Differential binding of alkylating fluorochromes in human chromosomes. Exp Cell Res 60:315–319

    Article  CAS  PubMed  Google Scholar 

  2. Mitelman (ed) (1983) Catalog of chromosome aberrations in cancer. Wiley-Liss

    Google Scholar 

  3. George D, Powers V (1982) Amplified DNA sequences in Y1 mouse adrenal tumor cells: association with double minutes and localization to a homogeneously staining chromosomal region. Proc Natl Acad Sci U S A 79:1597–1601

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Bishop J (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354

    Article  CAS  PubMed  Google Scholar 

  5. Alitalo K, Schwab M, Lin C, Varmus H, Bishop J (1983) Homogeneously staining chromosomal regions contain amplified copies of an abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci U S A 80:1707–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Johnson B, Brennan J, Ihde D, Gazdar A (1992) myc family DNA amplification in tumors and tumor cell lines from patients with small-cell lung cancer. J Natl Cancer Inst Monogr 13:39–43

    PubMed  Google Scholar 

  7. Johnson B, Makuch R, Simmons A, Gazdar A, Burch D et al (1988) myc family DNA amplification in small cell lung cancer patients’ tumors and corresponding cell lines. Cancer Res 48:5163–5166

    CAS  PubMed  Google Scholar 

  8. Ma Y, Wei S, Lin Y, Lung J, Chang T et al (2000) PIK3CA as an oncogene in cervical cancer. Oncogene 19:2739–2744

    Article  CAS  PubMed  Google Scholar 

  9. Qian J, Massion P (2008) Role of chromosome 3q amplification in lung cancer. J Thorac Oncol 3:212–215

    Article  PubMed  Google Scholar 

  10. McCaughan F, Pole J, Bankier A, Konfortov B, Carroll B et al (2010) Progressive 3q amplification consistently targets SOX2 in preinvasive squamous lung cancer. Am J Respir Crit Care Med 182:83–91

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bass A, Watanabe H, Mermel C, Yu S, Perner S et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Justilien V, Walsh M, Ali S, Thompson E, Murray N et al (2014) The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 10:139–151

    Article  Google Scholar 

  13. Wang J, Qian J, Hoeksema M, Zou Y, Espinosa A et al (2013) Integrative genomics analysis identifies candidate drivers at 3q26-29 amplicon in squamous cell carcinoma of the lung. Clin Cancer Res 19:5580–5590

    Article  CAS  PubMed  Google Scholar 

  14. Toschi L, Finocchiaro G, Nguyen T, Skokan M, Giordano L et al (2014) Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS ONE 9:e95303

    Article  PubMed Central  PubMed  Google Scholar 

  15. Shen L, Huang X, Xie X, Su J, Yuan J et al (2014) High expression of SOX2 and OCT4 indicates radiation resistance and an independent negative prognosis in cervical squamous cell carcinoma. J Histochem Cytochem 62:499–509

    Article  PubMed Central  PubMed  Google Scholar 

  16. Hansen M, Cavenee W (1988) Retinoblastoma and the progression of tumor genetics. Trends Genet 4:125–128

    Article  CAS  PubMed  Google Scholar 

  17. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68:820–823

    Article  PubMed Central  PubMed  Google Scholar 

  18. White R (1992) Inherited cancer genes. Curr Opin Genet Dev 2:53–57

    Article  CAS  PubMed  Google Scholar 

  19. Levy D, Smith K, Beazer-Barclay Y, Hamilton S, Vogelstein et al (1994) Inactivation of both APC alleles in human and mouse tumors. Cancer Res 54:5953–5958

    CAS  PubMed  Google Scholar 

  20. Smith S, Easton D, Evans D, Ponder B (1992) Allele losses in the region 17q12-21 in familial breast and ovarian cancer involve the wild-type chromosome. Nat Genet 2:128–131

    Article  CAS  PubMed  Google Scholar 

  21. Gudmundsson J, Johannesdottir G, Bergthorsson J, Arason A, Ingvarsson S et al (1995) Different tumor types from BRCA2 carriers show wild-type chromosome deletions on 13q12-q13. Cancer Res 55:4830–3832

    CAS  PubMed  Google Scholar 

  22. Baker S, Fearon E, Nigro J, Hamilton S, Preisinger A et al (1989) Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 244:217–221

    Article  CAS  PubMed  Google Scholar 

  23. Hollstein M, Sidransky D, Vogelstein B, Harris C (1991) p53 mutations in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  24. Devilee P, Cleton-Jansen A, Cornelisse C (2001) Ever since Knudson. Trends Genet 17:569–573

    Article  CAS  PubMed  Google Scholar 

  25. Kamb A, Gruis N, Weaver-Feldhaus J, Liu Q, Harshman K et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947

    Article  CAS  PubMed  Google Scholar 

  27. Cox C, Bignell G, Greenman C, Stabenau A, Warren W et al (2005) A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci U S A 102:4542–4547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kok K, Naylor S, Buys C (1997) Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Adv Cancer Res 71:27–92

    Article  CAS  PubMed  Google Scholar 

  29. Burbee D, Forgacs E, Zöchbauer-Müller S, Shivakumar L, Fong K et al (2011) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    Article  Google Scholar 

  30. Berger A, Knudson A, Pandolfi P (2011) A continuum model for tumor suppression. Nature 476:163–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Gatto F, Nookaew I, Nielsen J (2014) Chromosome 3p loss of heterozygosity is associated with a unique metabolic network in clear cell renal carcinoma. Proc Natl Acad Sci U S A 111:E866–E875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Watanabe H, Ma Q, Peng S, Adelmant G, Swain D et al (2014) SOX2 and p63 colocalize at genetic loci in squamous cell carcinomas. J Clin Invest 124:1636–1645

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Booden MA, Ulka AS, Der CJ (2006) Cellular assays of oncogene transformation. In: Cellis JE (ed) Cell biology a laboratory handbook, published by Elsevier, pp 345–352

    Google Scholar 

  34. Brummelkamp T, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  PubMed  Google Scholar 

  35. Engel AM, Schou G (2006) Assays of tumorigencity in nude mice. In: Cellis JE (ed) Cell biology a laboratory handbook, published by Elsevier, pp 353–357

    Google Scholar 

  36. Akavia U, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D et al (2010) An integrated approach to uncover drivers of cancer. Cell 143:1005–1017

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Santarius T, Shipley J, Brewer D, Stratton MR, Cooper C (2010) A census of amplified and overexpressed human cancer genes. Nat Rev Cancer 10:59–64

    Article  CAS  PubMed  Google Scholar 

  38. Sawey E, Chanrion M, Cai C, Wu G, Zhang J et al (2011) Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by Oncogenomic screening. Cancer Cell 19:347–358

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Eifert C, Powers R (2012) From cancer genomes to oncogenic drivers, tumour dependencies and therapeutic targets. Nat Rev Cancer 12:572–578

    Article  CAS  PubMed  Google Scholar 

  40. Soucek L, Evan G (2010) The ups and downs of Myc biology. Curr Opin Genet Dev 20:91–95

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Schwab M, Alitalo K, Klempnauer KH, Varmus HE, Bishop J et al (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature 305:245–248

    Article  CAS  PubMed  Google Scholar 

  42. Brodeur G, Seeger R, Schwab M, Varmus H, Bishop J (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Article  CAS  PubMed  Google Scholar 

  43. Slamon D, Clark G, Wong S, Levin W, Ullrich A et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  CAS  PubMed  Google Scholar 

  44. Cobleigh M, Vogel C, Tripathy D, Robert N, Scholl S et al (1999) Multinational study of the efficacy and safety of humanized anti-HER2 monoclonal antibody in women who have HER2-overexpressing metastatic breast cancer that has progressed after chemotherapy for metastatic disease. J Clin Oncol 17:2639–2648

    CAS  PubMed  Google Scholar 

  45. Verma S, Miles D, Gianni L, Krop IE, Welslau M et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  Google Scholar 

  46. Rakha E, Ellis O (2014) Breast cancer: updated guideline recommendations for HER2 testing. Nat Rev Clin Oncol 11:8–9

    Article  PubMed  Google Scholar 

  47. Myllykangas S, Himberg J, Böhling T, Nagy B, Hollmén J et al (2006) DNA copy number amplification profiling of human neoplasms. Oncogene 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  48. Myllykangas S, Böhling T, Knuutila S (2007) Specificity, selection and significance of gene amplifications in cancer. Semin Cancer Biol 17:42–55

    Article  CAS  PubMed  Google Scholar 

  49. Scheinin I, Myllykangas S, Borze I, Böhling T, Knuutila S et al (2008) CanGEM: mining gene copy number changes in cancer. Nucleic Acids Res 36:D830–D835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Crockford A, Jamal-Hanjani M, Hicks J, Swanton C (2014) Implications of intratumour heterogeneity for treatment stratification. Pathology 232:264–273

    Google Scholar 

  51. Poste G (2012) Biospecimens, biomarkers, and burgeoning data: the imperative for more rigorous research standards. Trends Mol Med 18:717–722

    Article  CAS  PubMed  Google Scholar 

  52. Mehta S, Shelling A, Muthukaruppan A, Lasham A, Blenkiron C et al (2010) Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2:2125–2148

    Article  Google Scholar 

  53. Chen HY, Yu SL, Chen CH, Chang GC, Chen CY et al (2007) A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med 356:11–20

    Article  CAS  PubMed  Google Scholar 

  54. Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Campbell P, Stephens P, Pleasance E, O’Meara S, Li H et al (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet 40:722–729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Wood H, Belvedere O, Conway C, Daly C, Chalkley R et al (2010) Using next generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin fixed paraffin embedded specimens. Nucl Acid Res 38:e151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela Rabbitts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wood, H., Rabbitts, P. (2015). Copy Number Changes in Carcinomas: Applications. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_6

Download citation

Publish with us

Policies and ethics