Skip to main content

Abstract

Chromosomal fragile sites are specific loci that show gaps, breaks, or rearrangements in metaphase chromosomes when cells are cultured under conditions that partially inhibit DNA synthesis, inducing replication stress. The common fragile sites (CFS) are numerous in the human genome, and are essentially observed in all individuals. Although the molecular basis for chromosome fragility of CFSs remains incompletely understood, there is now general agreement that CFS sequences have a distinct replication programme that combines late replication with failure to activate origins in the core regions of the CFSs during replication stress, resulting in the failure to complete replication. The CFSs exhibit several features characteristic of highly unstable or recombinogenic regions of the genome, and CFSs have been shown to mediate genetic instability in cancers, including during the early stages of tumourigenesis. In this chapter, we review the molecular features of CFSs, as well as the relationship of CFSs to genomic alterations in cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutherland GR (2003) Rare fragile sites. Cytogenet Genome Res 100:77–84

    Article  CAS  PubMed  Google Scholar 

  2. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  CAS  PubMed  Google Scholar 

  3. Mrasek K, Schoder C, Teichmann AC et al (2010) Global screening and extended nomenclature for 230 aphidicolin-inducible fragile sites, including 61 yet unreported ones. Int J Oncol 36:929–940

    PubMed  Google Scholar 

  4. Glover TW, Berger C, Coyle J, Echo B (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67:136–142

    Article  CAS  PubMed  Google Scholar 

  5. Yunis JJ, Soreng AL, Bowe AE (1987) Fragile sites are targets of diverse mutagens and carcinogens. Oncogene 1:59–69

    CAS  PubMed  Google Scholar 

  6. Debatisse M, Le Tallec B, Letessier A, Dutrillaux B, Brison O (2012) Common fragile sites: mechanisms of instability revisited. Trends Genet TIG 28:22–32

    Article  CAS  PubMed  Google Scholar 

  7. Ozeri-Galai E, Bester AC, Kerem B (2012) The complex basis underlying common fragile site instability in cancer. Trends Genet TIG 28:295–302

    Article  CAS  PubMed  Google Scholar 

  8. McAllister BF, Greenbaum IF (1997) How common are common fragile sites: variation of aphidicolin-induced chromosomal fragile sites in a population of the deer mouse (Peromyscus maniculatus). Hum Genet 100:182–188

    Article  CAS  PubMed  Google Scholar 

  9. Cha RS, Kleckner N (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606

    Article  CAS  PubMed  Google Scholar 

  10. Hussein SM, Batada NN, Vuoristo S et al (2011) Copy number variation and selection during reprogramming to pluripotency. Nature 471:58–62

    Article  CAS  PubMed  Google Scholar 

  11. Arlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW (2011) Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci U S A 108:17360–17365

    Article  PubMed Central  PubMed  Google Scholar 

  12. Bignell GR, Greenman CD, Davies H et al (2010) Signatures of mutation and selection in the cancer genome. Nature 463:893–898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Fungtammasan A, Walsh E, Chiaromonte F, Eckert KA, Makova KD (2012) A genome-wide analysis of common fragile sites: what features determine chromosomal instability in the human genome? Genome Res 22:993–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Le Beau MM, Rassool FV, Neilly ME et al (1998) Replication of a common fragile site, FRA3B, occurs late in S phase and is delayed further upon induction: implications for the mechanism of fragile site induction. Hum Mol Genet 7:755–761

    Article  PubMed  Google Scholar 

  15. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert DM (2012) Replication origins run (ultra) deep. Nat Struct Mol Biol 19:740–742

    Article  CAS  PubMed  Google Scholar 

  17. Mechali M (2010) Eukaryotic DNA, replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol 11:728–738

    Article  CAS  PubMed  Google Scholar 

  18. Besnard E, Babled A, Lapasset L et al (2012) Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat Struct Mol Biol 19:837–844

    Article  CAS  PubMed  Google Scholar 

  19. Lucas I, Raghuraman MK (2003) The dynamics of chromosome replication in yeast. Curr Top Dev Biol 55:1–73

    Article  CAS  PubMed  Google Scholar 

  20. Achille A, Biasi MO, Zamboni G et al (1996) Chromosome 7q allelic losses in pancreatic carcinoma. Cancer Res 56:3808–3813

    CAS  PubMed  Google Scholar 

  21. Rhind N, Gilbert DM (2013) DNA replication timing. Cold Spring Harb Perspect Med 3:1–26

    PubMed  Google Scholar 

  22. Machida Y, Dutta A (2005) Cellular checkpoint mechanisms monitoring proper initiation of DNA replication. J Biol Chem 280:6253–6256

    Google Scholar 

  23. Dimitrova DS, Gilbert DM (2000) Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis. Nat Cell Biol 2:686–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Palakodeti A, Lucas I, Jiang Y et al (2010) Impaired replication dynamics at the FRA3B common fragile site. Hum Mol Genet 19:99–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Drouin R, Lemieux N, Richer CL (1990) Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma 99:273–280

    Article  CAS  PubMed  Google Scholar 

  26. Collins N, Poot RA, Kukimoto I, Garcia-Jimenez C, Dellaire G, Varga-Weisz PD (2002) An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32:627–632

    Article  CAS  PubMed  Google Scholar 

  27. Glover TW, Stein CK (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41:882–890

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Huebner K, Garrison PN, Barnes LD, Croce CM (1998) The role of the FHIT/FRA3B locus in cancer. Annu Rev Genet 32:7–31

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Darling J, Zhang JS, Huang H, Liu W, Smith DI (1999) Allele-specific late replication and fragility of the most active common fragile site, FRA3B. Hum Mol Genet 8:431–437

    Article  CAS  PubMed  Google Scholar 

  30. Lucas I, Palakodeti A, Jiang Y et al (2007) High-throughput mapping of origins of replication in human cells. EMBO Rep 8:770–777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Mesner LD, Valsakumar V, Cieslik M, Pickin R, Hamlin JL, Bekiranov S (2013) Bubble-seq analysis of the human genome reveals distinct chromatin-mediated mechanisms for regulating early- and late-firing origins. Genome Res 23:1774–1788

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Letessier A, Millot GA, Koundrioukoff S et al (2011) Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123

    Article  CAS  PubMed  Google Scholar 

  33. Hansen RS, Thomas S, Sandstrom R et al (2010) Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci U S A 107:139–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Le Tallec B, Millot GA, Blin ME, Brison O, Dutrillaux B, Debatisse M (2013) Common fragile site profiling in epithelial and erythroid cells reveals that most recurrent cancer deletions lie in fragile sites hosting large genes. Cell Rep 4:420–428

    Article  PubMed  Google Scholar 

  35. Palakodeti A, Han Y, Jiang Y, Le Beau MM (2004) The role of late/slow replication of the FRA16D in common fragile site induction. Genes Chromosomes Cancer 39:71–76

    Article  CAS  PubMed  Google Scholar 

  36. Mishmar D, Rahat A, Scherer SW et al (1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 95:8141–8146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Hellman A, Rahat A, Scherer SW, Darvasi A, Tsui LC, Kerem B (2000) Replication delay along FRA7H, a common fragile site on human chromosome 7, leads to chromosomal instability. Mol Cell Biol 20:4420–4427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lucas I, Palakodeti A, Le Beau MM (2007) The implications of DNA replication in common fragile site expression. In: Arrieta I, Penagarikano O, Télez M (eds) Fragile sites: new discoveries and changing perspectives. Nova Science Publishers, Hauppauge, pp 67–98

    Google Scholar 

  39. Hellman A, Zlotorynski E, Scherer SW et al (2002) A role for common fragile site induction in amplification of human oncogenes. Cancer Cell 1:89–97

    Article  CAS  PubMed  Google Scholar 

  40. Pelliccia F, Bosco N, Curatolo A, Rocchi A (2008) Replication timing of two human common fragile sites: FRA1H and FRA2G. Cytogenet Genome Res 121:196–200

    Article  CAS  PubMed  Google Scholar 

  41. Ozeri-Galai E, Lebofsky R, Rahat A, Bester AC, Bensimon A, Kerem B (2011) Failure of origin activation in response to fork stalling leads to chromosomal instability at fragile sites. Mol Cell 43:122–131

    Article  CAS  PubMed  Google Scholar 

  42. Palumbo E, Matricardi L, Tosoni E, Bensimon A, Russo A (2010) Replication dynamics at common fragile site FRA6E. Chromosoma 119:575–587

    Article  CAS  PubMed  Google Scholar 

  43. Debatisse M, El Achkar E, Dutrillaux B (2006) Common fragile sites nested at the interfaces of early and late-replicating chromosome bands: cis acting components of the G2/M checkpoint? Cell Cycle 5:578–581

    Article  CAS  PubMed  Google Scholar 

  44. Watanabe Y, Fujiyama A, Ichiba Y et al (2002) Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum Mol Genet 11:13–21

    Article  CAS  PubMed  Google Scholar 

  45. Pacek M, Walter JC (2004) A requirement for MCM7 and Cdc45 in chromosome unwinding during eukaryotic DNA replication. Embo J 23:3667–3676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Musio A, Montagna C, Mariani T et al (2005) SMC1 involvement in fragile site expression. Hum Mol Genet 14:525–533

    Article  CAS  PubMed  Google Scholar 

  47. Saintigny Y, Delacote F, Vares G et al (2001) Characterization of homologous recombination induced by replication inhibition in mammalian cells. Embo J 20:3861–3870

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  49. Helmrich ABM, Tora L (2011) Collisions between replication and transcription complexes cause common fragile site instability at the longest human genes. Mol Cell 44:966–977

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Y, Lucas I, Young DJ et al (2009) Common fragile sites are characterized by histone hypoacetylation. Hum Mol Genet 18:4501–4512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M (2002) Histone acetylation regulates the time of replication origin firing. Mol Cell 10:1223–1233

    Article  CAS  PubMed  Google Scholar 

  52. Barlow JH, Faryabi RB, Callen E et al (2013) Identification of early replicating fragile sites that contribute to genome instability. Cell 152:620–632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. LeBeau MM, Rowley JD (1984) Heritable fragile sites in cancer. Nature 308:607–608

    Article  CAS  PubMed  Google Scholar 

  54. Yarbro JW (1992) Mechanism of action of hydroxyurea. Semin Oncol 19:1–10

    CAS  PubMed  Google Scholar 

  55. Hills SA, Diffley JF (2014) DNA replication and oncogene-induced replicative stress. Curr Biol CB 24:R435–R444

    Article  CAS  PubMed  Google Scholar 

  56. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    Article  PubMed  Google Scholar 

  57. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:pl1

    Article  PubMed Central  PubMed  Google Scholar 

  58. Jiang Y, Hatzi K, Shaknovich R (2013) Mechanisms of epigenetic deregulation in lymphoid neoplasms. Blood 121:4271–4279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Abdel-Wahab O, Levine RL (2013) Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 121:3563–3572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19:698–711

    Article  CAS  PubMed  Google Scholar 

  61. Arlt MF, Durkin SG, Ragland RL, Glover TW (2006) Common fragile sites as targets for chromosome rearrangements. DNA Repair 5:1126–1135

    Article  CAS  PubMed  Google Scholar 

  62. Iliopoulos D, Guler G, Han SY et al (2006) Roles of FHIT and WWOX fragile genes in cancer. Cancer Lett 232:27–36

    Article  CAS  PubMed  Google Scholar 

  63. Drusco A, Pekarsky Y, Costinean S et al (2011) Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2011:984505

    Article  PubMed Central  PubMed  Google Scholar 

  64. Saldivar JC, Bene J, Hosseini SA et al (2013) Characterization of the role of Fhit in suppression of DNA damage. Adv Biol Regul 53:77–85

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Miller CT, Lin L, Casper AM et al (2006) Genomic amplification of MET with boundaries within fragile site FRA7G and upregulation of MET pathways in esophageal adenocarcinoma. Oncogene 25:409–418

    CAS  PubMed  Google Scholar 

  66. Ciullo M, Debily MA, Rozier L et al (2002) Initiation of the breakage-fusion-bridge mechanism through common fragile site activation in human breast cancer cells: the model of PIP gene duplication from a break at FRA7I. Hum Mol Genet 11:2887–2894

    Article  CAS  PubMed  Google Scholar 

  67. Wilke CM, Guo SW, Hall BK et al (1994) Multicolor FISH mapping of YAC clones in 3p14 and identification of a YAC spanning both FRA3B and the t(3;8) associated with hereditary renal cell carcinoma. Genomics 22:319–326

    Article  CAS  PubMed  Google Scholar 

  68. Yamakawa K, Takahashi E, Murata M, Okui K, Yokoyama S, Nakamura Y (1992) Detailed mapping around the breakpoint of (3;8) translocation in familial renal cell carcinoma and FRA3B. Genomics 14:412–416

    Article  CAS  PubMed  Google Scholar 

  69. Chesi M, Bergsagel PL, Shonukan OO et al (1998) Frequent dysregulation of the c-maf proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood 91:4457–4463

    CAS  PubMed  Google Scholar 

  70. Nambiar M, Raghavan SC (2011) How does DNA break during chromosomal translocations? Nucleic Acids Res 39:5813–5825

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Klein IA, Resch W, Jankovic M et al (2011) Translocation-capture sequencing reveals the extent and nature of chromosomal rearrangements in B lymphocytes. Cell 147:95–106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa R 3rd, Le Beau MM (1991) Preferential integration of marker DNA into the chromosomal fragile site at 3p14: an approach to cloning fragile sites. Proc Natl Acad Sci U S A 88:6657–6661

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wilke CM, Hall BK, Hoge A, Paradee W, Smith DI, Glover TW (1996) FRA3B extends over a broad region and contains a spontaneous HPV16 integration site: direct evidence for the coincidence of viral integration sites and fragile sites. Hum Mol Genet 5:187–195

    Article  CAS  PubMed  Google Scholar 

  74. Thorland EC, Myers SL, Gostout BS, Smith DI (2003) Common fragile sites are preferential targets for HPV16 integrations in cervical tumors. Oncogene 22:1225–1237

    Article  CAS  PubMed  Google Scholar 

  75. Bester AC, Roniger M, Oren YS et al (2011) Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 145:435–446

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Spardy N, Duensing A, Hoskins EE, Wells SI, Duensing S (2008) HPV-16 E7 reveals a link between DNA replication stress, fanconi anemia D2 protein, and alternative lengthening of telomere-associated promyelocytic leukemia bodies. Cancer Res 68:9954–9963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Ying S, Minocherhomji S, Chan KL et al (2013) MUS81 promotes common fragile site expression. Nat Cell Biol 15:1001–1007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank past and present members of the Le Beau laboratory for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle M. Le Beau Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jiang, Y., Lucas, I., Le Beau, M.M. (2015). Common Chromosomal Fragile Sites and Cancer. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_5

Download citation

Publish with us

Policies and ethics