Skip to main content

Molecular Genetics Methods in Discovery of Chromosome Structure

  • Chapter
Chromosomal Translocations and Genome Rearrangements in Cancer
  • 982 Accesses

Abstract

Somatically acquired tumour genome alterations underlie many of the changes in gene expression that promote tumour formation. These changes, ranging from single nucleotide changes to those involving parts of chromosomes or whole chromosomes, likely reflect the many different solutions taken by individual tumours to escape normal growth regulatory mechanisms. A variety of molecular and cytogenetic techniques, differing in resolution and capabilities for high throughput or single cell analysis, for example, have been used to investigate the altered state of tumour genomes. Some of these methods have become the mainstay of clinical cancer diagnosis and patient management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albertson DG, Collins C, McCormick F, Gray JW (2003) Chromosome aberrations in solid tumours. Nat Genet 34:369–376

    Article  CAS  PubMed  Google Scholar 

  2. Guan XY, Xu J, Anzick SL, Zhang H, Trent JM et al (1996) Hybrid selection of transcribed sequences from microdissected DNA: isolation of genes within amplified region at 20q11-q13.2 in breast cancer. Cancer Res 56:3446–3450

    CAS  PubMed  Google Scholar 

  3. Snijders AM, Hermsen MA, Baughman J, Buffart TE, Huey B et al (2008) Acquired genomic aberrations associated with methotrexate resistance vary with background genomic instability. Gene Chromosome Cancer 47:71–83

    Article  CAS  Google Scholar 

  4. Savelyeva L, Sagulenko E, Schmitt JG, Schwab M (2006) The neurobeachin gene spans the common fragile site FRA13A. Hum Genet 118:551–558

    Article  CAS  PubMed  Google Scholar 

  5. Vogt N, Lefevre SH, Apiou F, Dutrillaux AM, Cor A et al (2004) Molecular structure of double-minute chromosomes bearing amplified copies of the epidermal growth factor receptor gene in gliomas. Proc Natl Acad Sci U S A 101:11368–11373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Windle BE, Wahl GM (1992) Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat Res 276:199–224

    Article  CAS  PubMed  Google Scholar 

  7. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Righolt C, Mai S (2012) Shattered and stitched chromosomes-chromothripsis and chromoanasynthesis-manifestations of a new chromosome crisis? Gene Chromosome Cancer 51:975–981

    Article  CAS  Google Scholar 

  9. Sorzano CO, Pascual-Montano A, Sanchez de Diego A, Martinez AC, van Wely KH (2013) Chromothripsis: breakage-fusion-bridge over and over again. Cell Cycle 12:2016–2023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. McClintock B (1942) The fusion of broken ends of chromosomes following nuclear fusion. Proc Natl Acad Sci U S A 28:458–463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Birchall PS, Fishpool RM, Albertson DG (1995) Expression patterns of predicted genes from the C. elegans genome sequence visualized by FISH in whole organisms. Nat Genet 11:314–320

    Article  CAS  PubMed  Google Scholar 

  12. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792

    Article  CAS  PubMed  Google Scholar 

  13. Carlson RW, Moench SJ, Hammond ME, Perez EA, Burstein HJ et al (2006) HER2 testing in breast cancer: NCCN Task Force report and recommendations. J Natl Compr Cancer Netw JNCCN 4(Suppl 3):S1–S22; quiz S23-24

    Google Scholar 

  14. Gofrit ON, Zorn KC, Silvestre J, Shalhav AL, Zagaja GP et al (2008) The predictive value of multi-targeted fluorescent in-situ hybridization in patients with history of bladder cancer. Urol Oncol 26:246–249

    Article  CAS  PubMed  Google Scholar 

  15. Tanas MR, Goldblum JR (2009) Fluorescence in situ hybridization in the diagnosis of soft tissue neoplasms: a review. Adv Anat Pathol 16:383–391

    Article  CAS  PubMed  Google Scholar 

  16. van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM et al (2004) Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leuk Off J Leuk Soc Am Leuk Res Fund UK 18:895–908

    Article  Google Scholar 

  17. Schrock E, du Manoir S, Veldman T, Schoell B, Wienberg J et al (1996) Multicolor spectral karyotyping of human chromosomes. Science 273:494–497

    Article  CAS  PubMed  Google Scholar 

  18. Speicher MR, Gwyn Ballard S, Ward DC (1996) Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet 12:368–375

    Article  CAS  PubMed  Google Scholar 

  19. Liehr T, Starke H, Weise A, Lehrer H, Claussen U (2004) Multicolor FISH probe sets and their applications. Histol Histopathol 19:229–237

    CAS  PubMed  Google Scholar 

  20. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW et al (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumours. Science 258:818–821

    Article  CAS  PubMed  Google Scholar 

  21. Snijders AM, Nowak N, Segraves R, Blackwood S, Brown N et al (2001) Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29:263–264

    Article  CAS  PubMed  Google Scholar 

  22. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A et al (1999) Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

    Article  CAS  PubMed  Google Scholar 

  23. Huang J, Wei W, Zhang J, Liu G, Bignell GR et al (2004) Whole genome DNA copy number changes identified by high density oligonucleotide arrays. Hum Genomics 1:287–299

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Bignell GR, Huang J, Greshock J, Watt S, Butler A et al (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res 14:287–295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang Y, Cottman M, Schiffman JD (2012) Molecular inversion probes: a novel microarray technology and its application in cancer research. Cancer Genet 205:341–355

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP et al (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088

    Article  CAS  PubMed  Google Scholar 

  27. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F et al (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30:e57

    Article  PubMed Central  PubMed  Google Scholar 

  28. Homig-Holzel C, Savola S (2012) Multiplex ligation-dependent probe amplification (MLPA) in tumour diagnostics and prognostics. Diagn Mol Pathol Am J Surg Pathol B 21:189–206

    Article  Google Scholar 

  29. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26:317–325

    Article  CAS  PubMed  Google Scholar 

  30. Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A (2012) Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 28:2711–2718

    Article  CAS  PubMed  Google Scholar 

  31. Zhao M, Wang Q, Jia P, Zhao Z (2013) Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives. BMC Bioinform 14(Suppl 11):S1

    Article  Google Scholar 

  32. Boeva V, Popova T, Bleakley K, Chiche P, Cappo J et al (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28:423–425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Alkodsi A, Louhimo R, Hautaniemi S (2014) Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data. Brief Bioinform 16:242–254

    Article  PubMed  Google Scholar 

  34. Janevski A, Varadan V, Kamalakaran S, Banerjee N, Dimitrova N (2012) Effective normalization for copy number variation detection from whole genome sequencing. BMC Genomics 13(Suppl 6):S16

    Article  PubMed Central  PubMed  Google Scholar 

  35. Chuang PT, Albertson DG, Meyer BJ (1994) DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–474

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna G. Albertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Albertson, D.G. (2015). Molecular Genetics Methods in Discovery of Chromosome Structure. In: Rowley, J., Le Beau, M., Rabbitts, T. (eds) Chromosomal Translocations and Genome Rearrangements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-19983-2_2

Download citation

Publish with us

Policies and ethics