Skip to main content

GPU-Accelerated Computing with Gibbs Sampler for the 2PNO IRT Model

  • Conference paper
Quantitative Psychology Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 140))

Abstract

Item response theory (IRT) is a popular approach used for addressing large-scale statistical problems in psychometrics as well as in other fields. The fully Bayesian approach for estimating IRT models is usually memory and computational expensive due to the large number of iterations. This limits the use of the procedure in many applications. In an effort to overcome such restrictions, previous studies proposed to tackle the problem using massive core-based graphic processing units (GPU), and demonstrated the advantage of this approach over the message passing interface (MPI) by showing that a single GPU card could achieve a speedup of up to 50×. Given that GPU is practical, cost-effective, and convenient, this study aims to seek further improvements using a single GPU card.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using Gibbs sampling. Journal of Educational Statistics, 17(3), 251–269.

    Article  Google Scholar 

  • Bafumi, J., Gelman, A., Park, D. K., & Kaplan, N. (2005). Practical issues in implementing and understanding Bayesian ideal point estimation. Political Analysis, 13(2), 171–187.

    Article  Google Scholar 

  • Baker, F. B., & Kim, S. H. (2004). Item response theory: Parameter estimation techniques. (2nd ed.). New York: Dekker.

    Google Scholar 

  • Beseler, C. L., Taylor, L. A., & Leeman, R. F. (2010). An item-response theory analysis of DSM-IV alcohol-use disorder criteria and “binge” drinking in undergraduates. Journal of Studies on Alcohol and Drugs, 71(3), 418–423.

    Article  Google Scholar 

  • Birnbaum, A. (1969). Statistical theory for logistic mental test models with a prior distribution of ability. Journal of Mathematical Psychology, 6(2), 258–276.

    Article  MATH  Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459.

    Article  MathSciNet  Google Scholar 

  • Courvoisier, D., & Etter, J. F. (2008). Using item response theory to study the convergent and discriminant validity of three questionnaires measuring cigarette dependence. Psychology of Addictive Behaviors, 22(3), 391–401.

    Article  Google Scholar 

  • DiMarco, J., & Taufer. M. (2013). Performance impact of dynamic parallelism on different clustering algorithms. In SPIE Defense, Security, and Sensing, International Society for Optics and Photonics.

    Google Scholar 

  • Feske, U., Kirisci, L., Tarter, R. E., & Plkonis, P. A. (2007). An application of item response theory to the DSM-III-R criteria for borderline personality disorder. Journal of Personality Disorders, 21(4), 418–433.

    Article  Google Scholar 

  • Fienberg, S. E., Johnson, M. S., & Junker, B. W. (1999). Classical multilevel and Bayesian approaches to population size estimation using multiple lists. Journal of the Royal Statistical Society, Series A, 162(3), 383–392.

    Article  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741.

    Article  MATH  Google Scholar 

  • Georganas, E. (2013). High performance parallel Gibbs sampling for IRT models. Poster session presented at ParLab Winter Retreat, Berkeley, USA.

    Google Scholar 

  • Gilder, D. A., Gizer, I. R., & Ehlers, C. L. (2011). Item response theory analysis of binge drinking and its relationship to lifetime alcohol use disorder symptom severity in an American Indian community sample. Alcoholism: Clinical and Experimental Research, 35(5), 984–995.

    Article  Google Scholar 

  • Harris, M. (2007). Optimizing parallel reduction in CUDA. Presentation packaged with CUDA Toolkit, NVIDIA Corporation.

    Google Scholar 

  • Harwell, M., Stone, C. A., Hsu, H., & Kirisci, L. (1996). Monte Carlo studies in item response theory. Applied Psychological Measurement, 20(2), 101–126.

    Article  Google Scholar 

  • Hoberock, J., & Bell, N. (2010). Thrust: A parallel template library. http://thrust.github.io/.

  • Karunadasa, N. P., & Ranasinghe, D. N. (2009). Accelerating high performance applications with CUDA and MPI. In 2009 International Conference on Industrial and Information Systems (ICIIS) (pp. 331–336).

    Google Scholar 

  • Kirk, D. B., & Hwu, W. W. (2013). Programming massively parallel processors: A hands-on approach (2nd ed.). Burlington, MA: Addison-Wesley.

    Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Boston: Addison-Wesley.

    MATH  Google Scholar 

  • Luitjens, J. (2014). Faster parallel reduction on Kepler. Retrieved from http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/.

    Google Scholar 

  • Martin, C. S., Chung, T., Kirisci, L., & Langenbucher, J. W. (2006). Item response theory analysis of diagnostic criteria for alcohol and cannabis use disorders in adolescents: Implications for DSM-V. Journal of Abnormal Psychology, 115(4), 807–814.

    Article  Google Scholar 

  • Mislevy, R. J. (1985). Estimation of latent group effects. Journal of the American Statistical Association, 80(392), 993–997.

    Article  MathSciNet  Google Scholar 

  • Molenaar, I. W. (1995). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 39–51). New York: Springer.

    Chapter  Google Scholar 

  • NVIDIA. (2010). CUDA CURAND library. Santa Clara, CA: NVIDIA Corporation.

    Google Scholar 

  • Oancea, B., & Andrei, T. (2013). Developing a high performance software library with MPI and CUDA for matrix computations. Computational Methods in Social Sciences, 1(2), 1–10.

    Google Scholar 

  • Orlando, M., Sherbourne, C. D., & Thissen, D. (2000). Summed-score linking using item response theory: Application to depression measurement. Psychological Assessment, 12(3), 354–359.

    Article  Google Scholar 

  • Panter, A. T., & Reeve, B. B. (2002). Assessing tobacco beliefs among youth using item response theory models. Drug and Alcohol Dependence, 68(1), 21–39.

    Article  Google Scholar 

  • Pastias, K., Rahimi, M., Sheng, Y., & Rahimi, S. (2012). Parallel computing with a Bayesian item response model. American Journal of Computational Mathematics, 2(2), 65–71.

    Article  Google Scholar 

  • Patz, R. J., & Junker, B. (1999). A straightforward approach to Markov chain Monte Carlo methods for item response model. Journal of Educational and Behavioral Statistics, 24(2), 146–178.

    Article  Google Scholar 

  • Reiser, M. (1989). An application of the item-response model to psychiatric epidemiology. Sociological Methods and Research, 18(1), 66–103.

    Article  MathSciNet  Google Scholar 

  • Rose, J. S., & Dierker, L. C. (2010). An item response theory analysis of nicotine dependence symptoms in recent onset adolescent smokers. Drug and Alcohol Dependence, 110(12), 70–79.

    Article  Google Scholar 

  • Sheng, Y., & Headrick, T. C. (2007). An algorithm for implementing Gibbs sampling for 2PNO IRT models. Journal of Modern Applied Statistical Methods, 6(1), 341–349.

    Google Scholar 

  • Sheng, Y., & Rahimi, M. (2012). High performance Gibbs sampling for IRT models using row-wise decomposition. ISRN Computational Mathematics, 2012(264040), 1–9.

    Article  Google Scholar 

  • Sheng, Y., Welling, W. S., & Meng, M. M. (2014). A GPU-based Gibbs sampler for a unidimensional IRT model. ISRN Computational Mathematics, 2014 (368149), 1–11.

    Google Scholar 

  • Smith, A. F. M., & Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). Journal of the Royal Statistical Society, Series B, 55(1), 3–23.

    MathSciNet  MATH  Google Scholar 

  • Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of Statistics, 22(4), 1701–1728.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsutsumi, A., Iwata, N., Watanabe, N., de Jonge, J., Pikhart, H., Fernndez-Lpez, J. A., et al. (2009). Application of item response theory to achieve cross-cultural comparability of occupational stress measurement. International Journal of Methods in Psychiatric Research, 18(1), 58–67.

    Article  Google Scholar 

  • Tutakawa, R. K., & Lin, H. Y. (1986). Bayesian estimation of item response curves. Psychometrika, 51(2), 251–267.

    Article  MathSciNet  Google Scholar 

  • Yang, C.-T., Huang, C.-L., & Lin, C.-F. (2011). Hybrid CUDA, OpenMP, and MPI parallel programming on multicore GPU clusters. Computer Physics Communications, 182, 266–269.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sheng, Y., Welling, W.S., Zhu, M.M. (2015). GPU-Accelerated Computing with Gibbs Sampler for the 2PNO IRT Model. In: van der Ark, L., Bolt, D., Wang, WC., Douglas, J., Chow, SM. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-19977-1_5

Download citation

Publish with us

Policies and ethics