Skip to main content

Combinatorial RNA Design: Designability and Structure-Approximating Algorithm

  • Conference paper
  • First Online:
Combinatorial Pattern Matching (CPM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9133))

Included in the following conference series:

Abstract

In this work, we consider the Combinatorial RNA Design problem, a minimal instance of the RNA design problem in which one must return an RNA sequence that admits a given secondary structure as its unique base pair maximizing structure.

First, we fully characterize designable structures using restricted alphabets. Then, under a classic four-letter alphabet, we provide a complete characterization for designable structures without unpaired bases. When unpaired bases are allowed, we characterize extensive classes of (non-)designable structures, and prove the closure of the set of designable structures under the stutter operation. Membership of a given structure to any of the classes can be tested in \(\varTheta (n)\) time, including the generation of a solution sequence for positive instances. Finally, we consider a structure-approximating version of the problem that allows to extend bands (stems). We provide a \(\varTheta (n)\) algorithm which, given a structure \(S\) avoiding two trivially non-designable motifs, transforms \(S\) into a designable structure by adding at most one base-pair to each of its stems, and returns a solution sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguirre-Hernández, R., Hoos, H.H., Condon, A.: Computational RNA secondary structure design: empirical complexity and improved methods. BMC Bioinform. 8, 34 (2007)

    Article  Google Scholar 

  2. Avihoo, A., Churkin, A., Barash, D.: RNAexinv: an extended inverse RNA folding from shape and physical attributes to sequences. BMC Bioinform. 12(1), 319 (2011)

    Article  Google Scholar 

  3. Busch, A., Backofen, R.: INFO-RNA–a fast approach to inverse RNA folding. Bioinformatics 22(15), 1823–1831 (2006)

    Article  Google Scholar 

  4. Dai, D.C., Tsang, H.H., Wiese, K.C.: RNADesign: local search for RNA secondary structure design. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (2009)

    Google Scholar 

  5. Esmaili-Taheri, A., Ganjtabesh, M., Mohammad-Noori, M.: Evolutionary solution for the RNA design problem. Bioinformatics 30(9), 1250–1258 (2014)

    Article  Google Scholar 

  6. Frid, Y., Gusfield, D.: A simple, practical and complete \(o(n^3/\log n)\)-time algorithm for RNA folding using the Four-Russians speedup. Algorithms Mol. Biol. 5, 13 (2010)

    Article  Google Scholar 

  7. Garcia-Martin, J.A., Clote, P., Dotu, I.: RNAiFOLD: a constraint programming algorithm for RNA inverse folding and molecular design. J. Bioinform. Comput. Biol. 11(2), 1350001 (2013)

    Article  Google Scholar 

  8. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.R.: RFAM: an RNA family database. Nucleic Acids Res. 31(1), 439–441 (2003)

    Article  Google Scholar 

  9. Höner Zu Siederdissen, C., Hammer, S., Abfalter, I., Hofacker, I.L., Flamm, C., Stadler, P.F.: Computational design of RNAs with complex energy landscapes. Biopolymers 99(12), 1124–1136 (2013)

    Google Scholar 

  10. Hofacker, I.L., Fontana, W., Stadler, P., Bonhoeffer, L., Tacker, M., Schuster, P.: Fast folding and comparison of RNA secondary structures. Monatshefte für Chemie/Chem. Monthly 125(2), 167–188 (1994)

    Article  Google Scholar 

  11. Levin, A., Lis, M., Ponty, Y., O’Donnell, C.W., Devadas, S., Berger, B., Waldispühl, J.: A global sampling approach to designing and reengineering RNA secondary structures. Nucleic Acids Res. 40(20), 10041–10052 (2012)

    Article  Google Scholar 

  12. Lyngsø, R.B., Anderson, J.W., Sizikova, E., Badugu, A., Hyland, T., Hein, J.: FRNAkenstein: multiple target inverse RNA folding. BMC Bioinform. 13, 260 (2012)

    Article  Google Scholar 

  13. Mathews, D.H., Sabina, J., Zuker, M., Turner, D.H.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  14. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single-stranded RNA. Proc. Natl. Acad. Sci. USA 77, 6903–6913 (1980)

    Article  Google Scholar 

  15. Reinharz, V., Ponty, Y., Waldispühl, J.: A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution. Bioinformatics 29(13), i308–i315 (2013)

    Article  Google Scholar 

  16. Rodrigo, G., Landrain, T.E., Majer, E., Daròs, J.-A., Jaramillo, A.: Full design automation of multi-state RNA devices to program gene expression using energy-based optimization. PLoS Comput. Biol. 9(8), e1003172 (2013)

    Article  Google Scholar 

  17. Schnall-Levin, M., Chindelevitch, L., Berger, B.: Inverting the Viterbi algorithm: an abstract framework for structure design. In: Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland, June 5–9, 2008, pp. 904–911 (2008)

    Google Scholar 

  18. Takahashi, M.K., Lucks, J.B.: A modular strategy for engineering orthogonal chimeric RNA transcription regulators. Nucleic Acids Res. 41(15), 7577–7588 (2013)

    Article  Google Scholar 

  19. Taneda, A.: MODENA: a multi-objective RNA inverse folding. Adv. Appl. Bioinform. Chem. 4, 1–12 (2011)

    Google Scholar 

  20. Turner, D.H., Mathews, D.H.: NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 38, D280–D282 (2010). (Database issue)

    Article  Google Scholar 

  21. Wu, S.Y., Lopez-Berestein, G., Calin, G.A., Sood, A.K.: RNAi therapies: drugging the undruggable. Sci. Transl. Med. 6(240), 240ps7 (2014)

    Article  Google Scholar 

  22. Zadeh, J.N., Wolfe, B.R., Pierce, N.A.: Nucleic acid sequence design via efficient ensemble defect optimization. J. Comput. Chem. 32(3), 439–452 (2011)

    Article  Google Scholar 

  23. Zhou, Y., Ponty, Y., Vialette, S., Waldispuhl, J., Zhang, Y., Denise, A.: Flexible RNA design under structure and sequence constraints using formal languages. In: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics, BCB 2013, pp. 229–238. ACM (2013)

    Google Scholar 

  24. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133–148 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yann Ponty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Haleš, J., Maňuch, J., Ponty, Y., Stacho, L. (2015). Combinatorial RNA Design: Designability and Structure-Approximating Algorithm. In: Cicalese, F., Porat, E., Vaccaro, U. (eds) Combinatorial Pattern Matching. CPM 2015. Lecture Notes in Computer Science(), vol 9133. Springer, Cham. https://doi.org/10.1007/978-3-319-19929-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19929-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19928-3

  • Online ISBN: 978-3-319-19929-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics