Skip to main content

Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions

  • Chapter
Science of Crystal Structures

Abstract

We describe the topology, structure, and stability of giant fullerenes exhibiting various symmetries (I, I h , D 2h , T). Our results demonstrate that it is possible to create two new families of nested “chiral” icosahedral (I) fullerenes namely C260@C560@C980@C1520@ … and C140@C380@C740@C1220@ …, which exhibit interlayer separations of ca. 3.4 Å. These chiral fullerenes are thought to possess metalliclike conduction properties. We discuss in detail the transformation of polyhedral graphitic particles into quasispherical nested giant fullerenes by reorganization of carbon atoms, which result in the formation of additional pentagonal and heptagonal carbon rings. These “spherical” structures are metastable and we believe they could be formed under extreme conditions, such as those produced by high-energy electron irradiation. There is circumstantial experimental evidence for the presence of heptagonal rings within these spherical fullerenes.

Structural Chemistry 2002, 13(3/4):373–384.

This contribution is part of a collection entitled Generalized Crystallography and dedicated to the 75th anniversary of Professor Alan L. Mackay, FRS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature (London) 1985, 318, 162.

    Google Scholar 

  2. Krätschmer, W.; Lamb, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature (London) 1990, 347, 354.

    Google Scholar 

  3. Taylor, R.; Hare, J. P.; Abdul-Sada, A. K.; Kroto, H. W. J. Chem. Soc. Chem. Commun. 1990, p. 1423.

    Google Scholar 

  4. Iijima, S. J. Cryst. Growth 1980, 5, 675.

    Article  Google Scholar 

  5. Ugarte, D. Nature (London) 1992, 359, 707.

    Google Scholar 

  6. Iijima, S. Nature (London) 1991, 354, 56.

    Google Scholar 

  7. Amelinckx, S.; Zhang, X. B.; Bernaerts, D.; Zhang, X. F.; Ivanov, V.; Nagy, J. B. Science 1994, 265, 635.

    Article  CAS  Google Scholar 

  8. Iijima, S.; Ichihashi, T.; Ando, Y. Nature (London) 1992, 356, 776.

    Google Scholar 

  9. Zhou, D.; Seraphin, S. Chem. Phys. Lett. 1995, 238, 286.

    Article  Google Scholar 

  10. Mackay, A. L.; Terrones, H. Nature (London) 1991, 352, 762.

    Google Scholar 

  11. Terrones, H.; Fayos, J.; Aragón, J. L. Acta Met. Mater. 1994, 42, 2687.

    Google Scholar 

  12. Liu, J.; Dai, H.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Nature (London) 1997, 385, 780.

    Google Scholar 

  13. Martel, R.; Shea, H. R.; Avouris, P. Nature (London) 1999, 398, 299.

    Google Scholar 

  14. Saito, Y.; Matsumoto, T. Nature (London) 1998, 392, 237.

    Google Scholar 

  15. Sarkar, A.; Kroto, H. W.; Endo, M. Carbon 1995, 33, 51.

    Article  CAS  Google Scholar 

  16. Krishnan, A.; Dujardin, E.; Treacy, M. M. J.; Hugdahl, J.; Lynum, S.; Ebbesen, T. W. Nature (London) 1997, 388, 451.

    Google Scholar 

  17. Terrones, H.; Hayashi, T.; Muñoz-Navia, M.; Terrones, M.; Kim, Y. A.; Grobert, N.; Kamalakaran, R.; Dorantes-Dávila. J.; Escudero, R.; Dresselhaus, M. S.; Endo, M. Chem. Phys. Lett. 2001, 343, 241.

    Article  CAS  Google Scholar 

  18. Kroto, H. W.; McKay, K. G. Nature (London) 1988, 331, 328.

    Google Scholar 

  19. Maiti, A.; Brebec, C. J.; Bernholc, J. Phys. Rev. Lett. 1993, 70, 3023.

    Article  CAS  Google Scholar 

  20. Heidenreich, R. D.; Hess, W. M.; Ban, L. L. J. Appl. Crystallogr. 1968, 1, 1.

    Article  Google Scholar 

  21. Speck, J. S. Ph.D. Thesis, MIT (1989).

    Google Scholar 

  22. Sarkar, A. K. Ph.D. Thesis, University of Sussex (1994).

    Google Scholar 

  23. Cabioc’h, T.; Riviere, J. P.; Delafond, J. J. Mater. Sci. 1995, 30, 4787.

    Article  Google Scholar 

  24. Sano, N.; Wang, H.; Chhowalla, M.; Alexandrou, I.; Amaratunga, G. A. J. Nature (London) 2001, 414, 506.

    Google Scholar 

  25. Chen, X. H.; Wu, G. T.; Deng, F. M.; Wang, J. X.; Yang, H. S.; Wang, M.; Lu, X. N.; Peng, J. C.; Li, W. Z. Acta Phys. Sinica 2001, 50, 1264.

    CAS  Google Scholar 

  26. Terrones, H.; Terrones, M.; Hsu, W. K. Chem. Soc. Rev. 1995, 24, 341.

    Article  CAS  Google Scholar 

  27. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. III, J. Phys. Chem. 1990, 94, 8897.

    Article  CAS  Google Scholar 

  28. Barth, W. E.; Lawton, R. G. J. Amer. Chem. Soc. 1971, 93, 1730.

    Article  Google Scholar 

  29. Fletcher, R.; Reeves, C. M. Comput. J. 1964, 7, 149.

    Article  Google Scholar 

  30. Tersoff, J. Phys. Rev. B 1988, 37, 6991.

    Article  Google Scholar 

  31. Maiti, A.; Brabec, C. J.; Roland, C.; Bernholc, J. Phys. Rev. B 1995, 52, 14850.

    Article  CAS  Google Scholar 

  32. Terrones, M.; Terrones, H.; Charlier, J. C.; Banhart, F.; Ajayan, P. M. Science 2000, 288, 1226.

    Article  CAS  Google Scholar 

  33. Heggie, M. I.; Terrones, M.; Eggen, B. R.; Jungnickel, G.; Jones, R.; Latham, C. D.; Briddon, P. R.; Terrones, H. Phys. Rev. B. 1998, 57, 13339.

    Article  CAS  Google Scholar 

  34. Minimized structures using DREIDING force field where they were reparametrised to C-C bond lengths of 1.46 Å, which are suitable for the Tersoff Potential and approximates, with good accuracy, to experimental data (see Ref. 30).

    Google Scholar 

  35. Goldberg, M. Tohoku Math. J. 1937, 43, 104.

    Google Scholar 

  36. McKay, K. G.; Kroto, H. W.; Wales, D. J. J. Chem. Soc. Faraday Trans. 1992, 88, 2815.

    Article  CAS  Google Scholar 

  37. Yoshida, M.; Osawa, E. Fullerene Sci. Technol. 1993, 1, 55.

    Article  CAS  Google Scholar 

  38. Tang, A. C.; Huang, F. Q. Chem. Phys. Lett. 1995, 245, 561.

    Article  CAS  Google Scholar 

  39. Terrones, H.; Terrones, M. J. Phys. Chem. Solids 1997, 58, 1789.

    Article  CAS  Google Scholar 

  40. Smalley, R. E. Account Chem. Res. 1992, 25, 98.

    Article  CAS  Google Scholar 

  41. Füller, T.; Banhart, F. Chem. Phys. Lett. 1996, 254, 372.

    Article  Google Scholar 

  42. Ugarte, D. Europhys. Lett. 1993, 22, 45.

    Article  CAS  Google Scholar 

  43. Saito, Y.; Yoshikawa, T.; Inagaki, M.; Tomita, M.; Hayashi, T. Chem. Phys. Lett. 1994, 204, 277.

    Article  Google Scholar 

  44. Liu, H. W.; Hou, S. M.; Liu, S. J.; Tao, C. G.; Shi, Z. J.; Gu, Z. N.; Peng, L. M.; Wu, J. L.; Xue, Z. Q. Acta Phys. Chim. Sinica 2001, 17, 427.

    Google Scholar 

  45. Banhart, F.; Ajayan, P. M. Nature (London) 1996, 382, 433.

    Google Scholar 

  46. Ugarte, D. Chem Phys. Lett. 1993, 207, 473.

    Article  CAS  Google Scholar 

  47. Zwanger, M. S.; Banhart, F.; Seeger, A. J. Cryst. Growth 1996, 163, 445.

    Article  CAS  Google Scholar 

  48. Banhart, F. Rept. Progr. Phys. 1999, 62, 1181.

    Article  CAS  Google Scholar 

  49. Tarnai, T. (discussion by Hare, J. P. & Fowler, P. W.). In The Fullerenes: New Horizons for the Chemistry, Physics and Astrophysics of Carbon, Kroto, H. W.; Walton D. R. M., Eds.; Cambridge University Press, Cambridge, 1993; p. 45.

    Google Scholar 

  50. Stone, A. J.; Wales, D. J. Chem. Phys. Lett. 1986, 128, 501.

    Google Scholar 

  51. Brabec, C.; Maiti, A.; Bernholc, J. J. Chem. Phys. Lett. 1994, 219, 473.

    Article  CAS  Google Scholar 

  52. Terrones, M.; Terrones, H. Fullerene Sci. Technol. 1996, 4, 517.

    Article  CAS  Google Scholar 

  53. Bates, K. R.; Scuseria, G. E. Theoret. Chem. Acc. 1998, 99, 29.

    Article  CAS  Google Scholar 

  54. Mackay, A. L. Nature (London) 1982, 314, 604.

    Google Scholar 

  55. Mackay, A. L.; Terrones, H. Phil. Trans. Roy. Soc. London A 1993, 343, 113.

    Article  CAS  Google Scholar 

  56. Harris, P. J. F.; Tsang, S. C.; Claridge, J. B.; Green, M. L. H. J. Chem. Soc. Faraday Trans. 1994, 90, 2799.

    Article  CAS  Google Scholar 

  57. Harris, P. J. F. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century; Cambridge University Press: Cambridge, 1999.

    Google Scholar 

  58. Qin, L. C.; Iijima, S. Chem. Phys. Lett. 1996, 262, 252.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank CONACYT-Mèxico grants W-8001millennium initiative (HT, MT), G-25851-E (HT, MT), and the European Union grant CNT-NET project contract G5RT-CT2001-05026 (MT), for financial support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC06-76RLO 1830.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Terrones, M., Terrones, G., Terrones, H. (2015). Structure, Chirality, and Formation of Giant Icosahedral Fullerenes and Spherical Graphitic Onions. In: Hargittai, I., Hargittai, B. (eds) Science of Crystal Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-19827-9_10

Download citation

Publish with us

Policies and ethics