Skip to main content

Oxidative Stress and Obesity

  • Chapter
Obesity

Abstract

In the last few years, several studies have shown a strong association among obesity, altered redox state and inflammation; these studies have also shown that such alterations may be the link between obesity and obesity-related diseases (including Type 2 diabetes, cardiovascular disease, non-alcoholic fatty liver disease and cancer). Obese subjects usually show high levels of reactive oxygen or nitrogen species, impaired antioxidant defences and increased levels of inflammatory adipokines. Oxidative stress is certainly a result of excessive fat accumulation, but it has also been shown that oxidative stress, per se, leads to weight gain; therefore, it is not easy to establish the correct cause-effect relationship between obesity and oxidative stress.

This chapter analyses the main aspects linking oxidative stress to obesity, describing human studies in support of the association between alterations of redox homeostasis and obesity, the molecular mechanisms underlying these modifications and potential non-pharmacological strategies (including weight loss, physical activity, diet, dietary supplementation and microbiota modulation) aimed at reducing oxidative stress in obese individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO: World Health Organization obesity and overweight, Fact sheet N°311. Updated Jan 2015. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/.

  2. Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Dorjgochoo T, Gao YT, Chow WH, et al. Obesity, age, and oxidative stress in middle-aged and older women. Antioxid Redox Signal. 2011;4:2453–60.

    Article  CAS  Google Scholar 

  4. Gates A, Hanning RM, Gates M, et al. Vegetable and fruit intakes of on-reserve first nations schoolchildren compared to Canadian averages and current recommendations. Int J Environ Res Public Health. 2012;9:1379–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Pastore A, Ciampalini P, Tozzi G, et al. All glutathione forms are depleted in blood of obese and type 1 diabetic children. Pediatr Diabetes. 2012;13:272–7.

    Article  CAS  PubMed  Google Scholar 

  6. Bondia-Pons I, Ryan L, Martinez JA. Oxidative stress and inflammation interactions in human obesity. J Physiol Biochem. 2012;68:701–11.

    Article  CAS  PubMed  Google Scholar 

  7. Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14:10497–538.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. García OP, Ronquillo D, del Carmen Caamaño M, et al. Zinc, iron and vitamins A, C and E are associated with obesity, inflammation, lipid profile and insulin resistance in Mexican school-aged children. Nutrients. 2013;5:5012–30.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Sfar S, Boussoffara R, Sfar MT, et al. Antioxidant enzymes activities in obese Tunisian children. Nutr J. 2013;12:18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Sun M, Huang X, Yan Y, et al. Rac1 is a possible link between obesity and oxidative stress in Chinese overweight adolescents. Obesity (Silver Spring). 2012;20:2233–40.

    Article  CAS  Google Scholar 

  11. Gunanti IR, Marks GC, Al-Mamun A, et al. Low serum concentrations of carotenoids and vitamin E are associated with high adiposity in Mexican-American children. J Nutr. 2014;144:489–95.

    Article  CAS  PubMed  Google Scholar 

  12. Torun E, Gökçe S, Ozgen İT, et al. Serum paraoxonase activity and oxidative stress and their relationship with obesity-related metabolic syndrome and non-alcoholic fatty liver disease in obese children and adolescents. J Pediatr Endocrinol Metab. 2014;27:667–75.

    Article  CAS  PubMed  Google Scholar 

  13. Amirkhizi F, Siassi F, Djalali M, et al. Impaired enzymatic antioxidant defense in erythrocytes of women with general and abdominal obesity. Obes Res Clin Pract. 2014;8:e26–34.

    Article  PubMed  Google Scholar 

  14. Cervellati C, Bonaccorsi G, Cremonini E, et al. Waist circumference and dual-energy X-ray absorptiometry measures of overall and central obesity are similarly associated with systemic oxidative stress in women. Scand J Clin Lab Invest. 2014;74:102–7.

    Article  CAS  PubMed  Google Scholar 

  15. Chen L, Xu WM, Zhang D. Association of abdominal obesity, insulin resistance, and oxidative stress in adipose tissue in women with polycystic ovary syndrome. Fertil Steril. 2014;102:1167–74.

    Article  CAS  PubMed  Google Scholar 

  16. Krzystek-Korpacka M, Patryn E, Hotowy K, et al. Paraoxonase (PON)-1 activity in overweight and obese children and adolescents: association with obesity-related inflammation and oxidative stress. Adv Clin Exp Med. 2013;22:229–36.

    PubMed  Google Scholar 

  17. Agirbasli M, Tanrikulu A, Erkus E, et al. Serum paraoxonase-1 activity in children: the effects of obesity and insulin resistance. Acta Cardiol. 2014;69:679–85.

    PubMed  Google Scholar 

  18. Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16:378–400.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Youn JY, Siu KL, Lob HE, et al. Role of vascular oxidative stress in obesity and metabolic syndrome. Diabetes. 2014;63:2344–55.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Sies H, Stahl W, Sevanian A. Nutritional, dietary and postprandial oxidative stress. J Nutr. 2005;135:969–72.

    CAS  PubMed  Google Scholar 

  21. Patel C, Ghanim H, Ravishankar S, et al. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metab. 2007;92:4476–9.

    Article  CAS  PubMed  Google Scholar 

  22. Dandona P, Ghanim H, Chaudhuri A, et al. Macronutrient intake induces oxidative and inflammatory stress: potential relevance to atherosclerosis and insulin resistance. Exp Mol Med. 2010;42:245–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Muñoz A, Costa M. Nutritionally mediated oxidative stress and inflammation. Oxid Med Cell Longev. 2013;2013:610950.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab. 2009;20:78–87.

    Article  CAS  PubMed  Google Scholar 

  25. Drougard A, Fournel A, Valet P, et al. Impact of hypothalamic reactive oxygen species in the regulation of energy metabolism and food intake. Front Neurosci. 2015;9:56.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee H, Lee YJ, Choi H, et al. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem. 2009;284:10601–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Higuchi M, Dusting GJ, Peshavariya H, et al. Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and forkhead box o1 mediated upregulation of antioxidant enzymes. Stem Cells Dev. 2013;22:878–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Aroor AR, De Marco VG. Oxidative stress and obesity: the chicken or the egg? Diabetes. 2014;63:2216–8.

    Article  PubMed  Google Scholar 

  29. Serra D, Mera P, Malandrino MI, et al. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 2013;19:269–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Le Lay S, Simard G, Martinez MC, et al. Oxidative stress and metabolic pathologies: from an adipocentric point of view. Oxid Med Cell Longev. 2014;2014:908539.

    PubMed Central  PubMed  Google Scholar 

  31. Bryan S, Baregzay B, Spicer D, et al. Redox-inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol. 2013;91:22–30.

    Article  CAS  PubMed  Google Scholar 

  32. Bigornia SJ, Mott MM, Hess DT, et al. Long-term successful weight loss improves vascular endothelial function in severely obese individuals. Obesity (Silver Spring). 2010;18:754–9.

    Article  Google Scholar 

  33. Buchowski MS, Hongu N, Acra S, et al. Effect of modest caloric restriction on oxidative stress in women, a randomized trial. PLoS One. 2012;7:e47079.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gutierrez-Lopez L, Garcia-Sanchez JR, Rincon-Viquez Mde J, et al. Hypocaloric diet and regular moderate aerobic exercise is an effective strategy to reduce anthropometric parameters and oxidative stress in obese patients. Obes Facts. 2012;5:12–22.

    Article  CAS  PubMed  Google Scholar 

  35. Chae JS, Paik JK, Kang R, et al. Mild weight loss reduces inflammatory cytokines, leukocyte count, and oxidative stress in overweight and moderately obese participants treated for 3 years with dietary modification. Nutr Res. 2013;33:195–203.

    Article  CAS  PubMed  Google Scholar 

  36. Farinha JB, De Carvalho NR, Steckling FM, et al. An active lifestyle induces positive antioxidant enzyme modulation in peripheral blood mononuclear cells of overweight/obese postmenopausal women. Life Sci. 2015;121:152–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sofi F, Abbate R, Gensini GF, et al. Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr. 2010;92:1189–96.

    Article  CAS  PubMed  Google Scholar 

  38. Kwan HY, Chao X, Su T, et al. The anti-cancer and anti-obesity effects of mediterranean diet. Crit Rev Food Sci Nutr. 2015:0. doi: 10.1080/10408398.2013.852510.

    Google Scholar 

  39. Widmer RJ, Flammer AJ, Lerman LO, et al. The Mediterranean diet, its components, and cardiovascular disease. Am J Med. 2015;128:229–38.

    Article  PubMed  Google Scholar 

  40. Calder PC, Ahluwalia N, Brouns F, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S5–78.

    Article  CAS  PubMed  Google Scholar 

  41. González-Castejón M, Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: a review. Pharmacol Res. 2011;64:438–55.

    Article  PubMed  CAS  Google Scholar 

  42. Sies H, Hollman PC, Grune T, et al. Protection by flavanol-rich foods against vascular dysfunction and oxidative damage: 27th Hohenheim Consensus Conference. Adv Nutr. 2012;3:217–21.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Arora T, Singh S, Sharma RK. Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition. 2013;29:591–6.

    Article  CAS  PubMed  Google Scholar 

  44. Khor A, Grant R, Tung C, et al. Postprandial oxidative stress is increased after a phytonutrient-poor food but not after a kilojoule-matched phytonutrient-rich food. Nutr Res. 2014;34:391–400.

    Article  CAS  PubMed  Google Scholar 

  45. Bjelakovic G, Nikolova D, Gluud LL, et al. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. 2012;(3):CD007176.

    Google Scholar 

  46. Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev. 2012;70:257–65.

    Article  PubMed  Google Scholar 

  47. Jones DP, Radi R. Redox pioneer: professor Helmut Sies. Antioxid Redox Signal. 2014;21:2459–68.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4C:180–3.

    Article  CAS  Google Scholar 

  49. Murphy MP, Holmgren A, Larsson NG, et al. Unraveling the biological roles of reactive oxygen species. Cell Metab. 2011;13:361–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ye ZW, Zhang J, Townsend DM. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta. 2015;1850(8):1607–21.

    Google Scholar 

  51. Lushchak VI. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact. 2014;224C:164–75.

    Article  PubMed  CAS  Google Scholar 

  52. Lee MC. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr. 2013;52:1–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol. 2004;142:231–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Komosinska-Vassev K, Olczyk P, Winsz-Szczotka K, et al. Plasma biomarkers of oxidative and AGE-mediated damage of proteins and glycosaminoglycans during healthy ageing: a possible association with ECM metabolism. Mech Ageing Dev. 2012;133:538–48.

    Article  CAS  PubMed  Google Scholar 

  55. Dorjgochoo T, Gao YT, Chow WH, et al. Major metabolite of F2-isoprostane in urine may be a more sensitive biomarker of oxidative stress than isoprostane itself. Am J Clin Nutr. 2012;96:405–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Il’yasova D, Wang F, Spasojevic I, et al. Urinary F2-isoprostanes, obesity, and weight gain in the IRAS cohort. Obesity. 2012;20:1915–21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Olza J, Aguilera CM, Gil-Campos M, et al. Myeloperoxidase is an early biomarker of inflammation and cardiovascular risk in prepubertal obese children. Diabetes Care. 2012;35:2373–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Jansen EH, Ruskovska T. Comparative analysis of serum (anti)oxidative status parаmeters in healthy persons. Int J Mol Sci. 2013;14:6106–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Rindler PM, Plafker SM, Szweda LI, et al. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem. 2013;288:1979–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Brown LA, Kerr CJ, Whiting P, et al. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity (Silver Spring). 2009;17:460–6.

    Article  CAS  Google Scholar 

  61. Mittal PC, Kant R. Correlation of increased oxidative stress to body weight in disease-free post menopausal women. Clin Biochem. 2009;42:1007–11.

    Article  CAS  PubMed  Google Scholar 

  62. Olivares-Corichi IM, Viquez MJ, Gutierrez-Lopez L, et al. Oxidative stress present in the blood from obese patients modifies the structure and function of insulin. Horm Metab Res. 2011;43:748–53.

    Article  CAS  PubMed  Google Scholar 

  63. Bougoulia M, Triantos A, Koliakos G. Plasma interleukin-6 levels, glutathione peroxidase and isoprostane in obese women before and after weight loss. Association with cardiovascular risk factors. Hormones (Athens). 2006;5:192–9.

    Article  Google Scholar 

  64. Strauss RS. Comparison of serum concentrations of -tocopherol and -carotene in a cross-sectional sample of obese and nonobese children (NHANES III). National Health and Nutrition Examination Survey. J Pediatr. 1999;134:160–5.

    Article  CAS  PubMed  Google Scholar 

  65. Weisstaub G, Hertrampf E, López de Romaña D, et al. Plasma zinc concentration, body composition and physical activity in obese preschool children. Biol Trace Elem Res. 2007;118:167–74.

    Article  CAS  PubMed  Google Scholar 

  66. Ortega RM, Rodríguez-Rodríguez E, Aparicio A, et al. Young children with excess of weight show an impaired selenium status. Int J Vitam Nutr Res. 2012;82:121–9.

    Article  CAS  PubMed  Google Scholar 

  67. Tran B, Oliver S, Rosa J, et al. Aspects of inflammation and oxidative stress in pediatric obesity and type 1 diabetes: an overview of ten years of studies. Exp Diabetes Res. 2012;2012:683680.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Warolin J, Coenen KR, Kantor JL, et al. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy Black and White American youth. Pediatr Obes. 2014;9:43–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Pirgon Ö, Bilgin H, Çekmez F, et al. Association between insulin resistance and oxidative stress parameters in obese adolescents with non-alcoholic fatty liver disease. J Clin Res Pediatr Endocrinol. 2013;5:33–9.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Faienza MF, Francavilla R, Goffredo R, et al. Oxidative stress in obesity and metabolic syndrome in children and adolescents. Horm Res Paediatr. 2012;78:158–64.

    Article  CAS  PubMed  Google Scholar 

  71. Krzystek-Korpacka M, Patryn E, Boehm D, et al. Advanced oxidation protein products (AOPPs) in juvenile overweight and obesity prior to and following weight reduction. Clin Biochem. 2008;41:943–9.

    Article  CAS  PubMed  Google Scholar 

  72. Codoñer-Franch P, Tavárez-Alonso S, Murria-Estal R, et al. Elevated advanced oxidation protein products (AOPPs) indicate metabolic risk in severely obese children. Nutr Metab Cardiovasc Dis. 2012;22:237–43.

    Article  PubMed  CAS  Google Scholar 

  73. Dennis BA, Ergul A, Gower BA, et al. Oxidative stress and cardiovascular risk in overweight children in an exercise intervention program. Child Obes. 2013;9:15–21.

    PubMed Central  PubMed  Google Scholar 

  74. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:103472.

    PubMed Central  PubMed  Google Scholar 

  75. Kaidar-Person O, Person B, Szomstein S, et al. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part A: vitamins. Obes Surg. 2008;18:870–6.

    Article  PubMed  Google Scholar 

  76. Kaidar-Person O, Person B, Szomstein S, et al. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part B: minerals. Obes Surg. 2008;18:1028–34.

    Article  PubMed  Google Scholar 

  77. Andersen LF, Jacobs Jr DR, Gross MD, et al. Longitudinal associations between body mass index and serum carotenoids: the CARDIA study. Br J Nutr. 2006;95:358–65.

    Article  CAS  PubMed  Google Scholar 

  78. Canoy D, Wareham N, Welch A, et al. Plasma ascorbic acid concentrations and fat distribution in 19 068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. Am J Clin Nutr. 2005;82:1203–9.

    CAS  PubMed  Google Scholar 

  79. Aasheim ET, Bøhmer T. Low preoperative vitamin levels in morbidly obese patients: a role of systemic inflammation. Surg Obes Relat Dis. 2008;4:779–80.

    Article  PubMed  Google Scholar 

  80. Tinahones FJ, Murri-Pierri M, Garrido-Sánchez L, et al. Oxidative stress in severely obese persons is greater in those with insulin resistance. Obesity (Silver Spring). 2009;17:240–6.

    Article  CAS  Google Scholar 

  81. Viroonudomphol D, Pongpaew P, Tungtrongchitr R, et al. Erythrocyte antioxidant enzymes and blood pressure in relation to overweight and obese Thai in Bangkok. Southeast Asian J Trop Med Public Health. 2000;31:325–34.

    CAS  PubMed  Google Scholar 

  82. Aslan M, Horoz M, Sabuncu T, et al. Serum paraoxonase enzyme activity and oxidative stress in obese subjects. Pol Arch Med Wewn. 2011;121:181–6.

    CAS  PubMed  Google Scholar 

  83. Chrysohoou C, Panagiotakos DB, Pitsavos C, et al. The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis. 2007;17:590–7.

    Article  PubMed  Google Scholar 

  84. Karaouzene N, Merzouk H, Aribi M, et al. Effects of the association of aging and obesity on lipids, lipoproteins and oxidative stress biomarkers: a comparison of older with young men. Nutr Metab Cardiovasc Dis. 2011;21:792–9.

    Article  CAS  PubMed  Google Scholar 

  85. Rajappa M, Tagirasa R, Nandeesha H, et al. Synergy of iron, high sensitivity C-reactive protein and ceruloplasmin with oxidative stress in non-diabetic normo-tensive South Indian obese men. Diabetes Metab Syndr. 2013;7:214–7.

    Article  PubMed  Google Scholar 

  86. Ferretti G, Bacchetti T, Masciangelo S, et al. HDL-paraoxonase and membrane lipid peroxidation: a comparison between healthy and obese subjects. Obesity (Silver Spring). 2010;18:1079–84.

    Article  CAS  Google Scholar 

  87. Li Y, Mouche S, Sajic T, et al. Deficiency in the NADPH oxidase 4 predisposes towards diet-induced obesity. Int J Obes (Lond). 2012;36:1503–13.

    Article  CAS  Google Scholar 

  88. Hermsdorff HH, Barbosa KB, Volp AC, et al. Gender-specific relationships between plasma oxidized low-density lipoprotein cholesterol, total antioxidant capacity, and central adiposity indicators. Eur J Prev Cardiol. 2014;21:884–91.

    PubMed  Google Scholar 

  89. Sen S, Iyer C, Meydani SN. Obesity during pregnancy alters maternal oxidant balance and micronutrient status. J Perinatol. 2014;34:105–11.

    Article  CAS  PubMed  Google Scholar 

  90. Malti N, Merzouk H, Merzouk SA, et al. Oxidative stress and maternal obesity: feto-placental unit interaction. Placenta. 2014;35:411–6.

    Article  CAS  PubMed  Google Scholar 

  91. Murri M, Luque-Ramírez M, Insenser M, et al. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update. 2013;19:268–88.

    Article  CAS  PubMed  Google Scholar 

  92. Bełtowski J. Leptin and the regulation of endothelial function in physiological and pathological conditions. Clin Exp Pharmacol Physiol. 2012;39:168–78.

    Article  PubMed  CAS  Google Scholar 

  93. Jones DA, Prior SL, Barry JD, et al. Changes in markers of oxidative stress and DNA damage in human visceral adipose tissue from subjects with obesity and type 2 diabetes. Diabetes Res Clin Pract. 2014;106:627–33.

    Article  CAS  PubMed  Google Scholar 

  94. Surmi BK, Hasty AH. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vascul Pharmacol. 2010;52:27–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Santilli F, Guagnano MT, Vazzana N, et al. Oxidative stress drivers and modulators in obesity and cardiovascular disease: from biomarkers to therapeutic approach. Curr Med Chem. 2015;22:582–95.

    Article  CAS  PubMed  Google Scholar 

  96. Xue P, Hou Y, Chen Y, et al. Adipose deficiency of Nrf2 in ob/ob mice results in severe metabolic syndrome. Diabetes. 2013;62:845–54.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Hierro C, Monte MJ, Lozano E, et al. Liver metabolic/oxidative stress induces hepatic and extrahepatic changes in the expression of the vitamin C transporters SVCT1 and SVCT2. Eur J Nutr. 2014;53:401–12.

    Article  CAS  PubMed  Google Scholar 

  98. Yuzefovych LV, Musiyenko SI, Wilson GL, et al. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLoS One. 2013;8:e54059.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Wang S, Kaufman RJ. The impact of the unfolded protein response on human disease. J Cell Biol. 2012;197:857–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Coen PM, Goodpaster BH. Role of intramyocelluar lipids in human health. Trends Endocrinol Metab. 2012;23:391–8.

    Article  CAS  PubMed  Google Scholar 

  101. Amati F. Revisiting the diacylglycerol-induced insulin resistance hypothesis. Obes Rev. 2012;13:40–50.

    Article  CAS  PubMed  Google Scholar 

  102. Diaz-Meco MT, Moscat J. The atypical PKCs in inflammation: NF-kB and beyond. Immunol Rev. 2012;246:154–67.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Piperi C, Adamopoulos C, Dalagiorgou G, et al. Crosstalk between advanced glycation and endoplasmic reticulum stress: emerging therapeutic targeting for metabolic diseases. J Clin Endocrinol Metab. 2012;97:2231–42.

    Article  CAS  PubMed  Google Scholar 

  104. Boldin MP, Baltimore D. MicroRNAs, new effectors and regulators of NF-kB. Immunol Rev. 2012;246:205–20.

    Article  PubMed  CAS  Google Scholar 

  105. Williams MD, Mitchell GM. MicroRNAs in insulin resistance and obesity. Exp Diabetes Res. 2012;2012:484696.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25:2515–27.

    Article  CAS  PubMed  Google Scholar 

  107. Kang YS. Obesity associated hypertension: new insights into mechanism. Electrolyte Blood Press. 2013;11:46–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Ceci R, Sabatini S, Duranti G, et al. Acute, but not chronic, leptin treatment induces acyl-CoA oxidase in C2C12 myotubes. Eur J Nutr. 2007;46:364–8.

    Article  PubMed  Google Scholar 

  109. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6:772–83.

    Article  CAS  PubMed  Google Scholar 

  110. Rupérez AI, Gil A, Aguilera CM. Genetics of oxidative stress in obesity. Int J Mol Sci. 2014;15:3118–44.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  111. Weng SW, Lin TK, Wang PW, et al. Single nucleotide polymorphisms in the mitochondrial control region are associated with metabolic phenotypes and oxidative stress. Gene. 2013;531:370–6.

    Article  CAS  PubMed  Google Scholar 

  112. Loos RJ, Yeo GS. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat Rev Endocrinol. 2014;10:51–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Donadelli M, Dando I, Fiorini C, et al. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci. 2014;71:1171–90.

    Article  CAS  PubMed  Google Scholar 

  114. Matsuda M, Shimomura I. Increased oxidative stress in obesity: implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract. 2013;7:e330–41.

    Article  PubMed  Google Scholar 

  115. Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med. 2012;52:59–69.

    Article  CAS  PubMed  Google Scholar 

  116. Bonomini F, Rodella LF, Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6:109–20.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Chetboun M, Abitbol G, Rozenberg K, et al. Maintenance of redox state and pancreatic beta-cell function: role of leptin and adiponectin. J Cell Biochem. 2012;113:1966–76.

    Article  CAS  PubMed  Google Scholar 

  118. Frohnert BI, Long EK, Hahn WS, Bernlohr DA. Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes. 2014;63:89–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  119. Diaz-Ruiz A, Guzman Ruiz R, Moreno Castellanos N, et al. Proteasome dysfunction associated to oxidative stress and proteotoxicity in adipocytes compromise insulin sensitivity in human obesity. Antioxid Redox Signal. 2015;00:1–16. doi: 10.1089/ars.2014.5939.

    Google Scholar 

  120. Bailey-Downs LC, Tucsek Z, Toth P, et al. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation. J Gerontol A Biol Sci Med Sci. 2013;68:780–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  121. Vucenik I, Stains JP. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann N Y Acad Sci. 2012;1271:37–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  122. Donmez-Altuntas H, Sahin F, Bayram F, et al. Evaluation of chromosomal damage, cytostasis, cytotoxicity, oxidative DNA damage and their association with body-mass index in obese subjects. Mutat Res Genet Toxicol Environ Mutagen. 2014;771:30–6.

    Article  CAS  PubMed  Google Scholar 

  123. Cerdá C, Sánchez C, Climent B, et al. Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv Exp Med Biol. 2014;824:5–17.

    Article  PubMed  CAS  Google Scholar 

  124. Booth A, Magnuson A, Fouts J, et al. Adipose tissue, obesity and adipokines: role in cancer promotion. Horm Mol Biol Clin Investig. 2015;21:57–74.

    CAS  PubMed  Google Scholar 

  125. Lee SD, Ju G, Choi JA, et al. The association of oxidative stress with central obesity in obstructive sleep apnea. Sleep Breath. 2012;16:511–7.

    Article  PubMed  Google Scholar 

  126. Feairheller DL, Brown MD, Park JY, et al. Exercise training, NADPH oxidase p22phox gene polymorphisms, and hypertension. Med Sci Sports Exerc. 2009;41:1421–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  127. De Lemos ET, Oliveira J, Pinheiro JP, et al. Regular physical exercise as a strategy to improve antioxidant and anti-inflammatory status: benefits in type 2 diabetes mellitus. Oxid Med Cell Longev. 2012;2012:741545.

    PubMed  Google Scholar 

  128. Oh S, Tanaka K, Warabi E, et al. Exercise reduces inflammation and oxidative stress in obesity-related liver diseases. Med Sci Sports Exerc. 2013;45:2214–22.

    Article  CAS  PubMed  Google Scholar 

  129. Krause M, Rodrigues-Krause J, O’Hagan C, et al. The effects of aerobic exercise training at two different intensities in obesity and type 2 diabetes: implications for oxidative stress, low-grade inflammation and nitric oxide production. Eur J Appl Physiol. 2014;114:251–60.

    Article  CAS  PubMed  Google Scholar 

  130. Venojärvi M, Korkmaz A, Wasenius N, et al. 12 weeks’ aerobic and resistance training without dietary intervention did not influence oxidative stress but aerobic training decreased atherogenic index in middle-aged men with impaired glucose regulation. Food Chem Toxicol. 2013;61:127–35.

    Article  PubMed  CAS  Google Scholar 

  131. Rahimi RS, Landaverde C. Nonalcoholic fatty liver disease and the metabolic syndrome: clinical implications and treatment. Nutr Clin Pract. 2013;28:40–51.

    Article  PubMed  Google Scholar 

  132. Pendyala S, Neff LM, Suárez-Fariñas M, et al. Diet-induced weight loss reduces colorectal inflammation: implications for colorectal carcinogenesis. Am J Clin Nutr. 2011;93:234–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  133. Montero D, Walther G, Perez-Martin A, et al. Endothelial dysfunction, inflammation, and oxidative stress in obese children and adolescents: markers and effect of lifestyle intervention. Obes Rev. 2012;13:441–55.

    Article  CAS  PubMed  Google Scholar 

  134. Tumova E, Sun W, Jones PH, et al. The impact of rapid weight loss on oxidative stress markers and the expression of the metabolic syndrome in obese individuals. J Obes. 2013;2013:729515.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Crujeiraseiras AB, Parra D, Milagro FI, et al. Differential expression of oxidative stress and inflammation related genes in peripheral blood mononuclear cells in response to a low-calorie diet: a nutrigenomics study. OMICS. 2008;12:251–61.

    Article  CAS  Google Scholar 

  136. Gallí M, Van Gool F, Leo O. Sirtuins and inflammation: friends or foes? Biochem Pharmacol. 2011;81:569–76.

    Article  PubMed  CAS  Google Scholar 

  137. Salminen A, Hyttinen JM, Kaarniranta K. AMP-activated protein kinase inhibits NF-kB signaling and inflammation: impact on healthspan and lifespan. J Mol Med (Berl). 2011;89:667–76.

    Article  CAS  Google Scholar 

  138. Leamy AK, Egnatchik RA, Young JD. Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 2013;52:165–74.

    Article  CAS  PubMed  Google Scholar 

  139. Agnoli C, Grioni S, Sieri S, et al. Italian mediterranean index and risk of colorectal cancer in the Italian section of the EPIC cohort. Int J Cancer. 2013;132:1404–11.

    Article  CAS  PubMed  Google Scholar 

  140. Samieri C, Okereke OI, Devore E E, et al. Long-term adherence to the Mediterranean diet is associated with overall cognitive status, but not cognitive decline, in women. J Nutr. 2013;143:493–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Willcox DC, Willcox BJ, Todoriki H, et al. The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr. 2009;28:500S–16.

    Article  CAS  PubMed  Google Scholar 

  142. van Dijk SJ, Feskens EJ, Bos MB, et al. Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women. J Nutr. 2012;142:1219–25.

    Article  PubMed  CAS  Google Scholar 

  143. Ortega-Azorín C, Sorlí JV, Asensio EM, et al. Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol. 2012;11:137.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  144. Balakumar P, Taneja G. Fish oil and vascular endothelial protection: bench to bedside. Free Radic Biol Med. 2012;53:271–9.

    Article  CAS  PubMed  Google Scholar 

  145. Sjoberg NJ, Milte CM, Buckley JD, et al. Dose-dependent increases in heart rate variability and arterial compliance in overweight and obese adults with DHA-rich fish oil supplementation. Br J Nutr. 2010;103:243–8.

    Article  CAS  PubMed  Google Scholar 

  146. Rhee Y, Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J. 2011;10:44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  147. Kusunoki C, Yang L, Yoshizaki T, et al. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes. Biochem Biophys Res Commun. 2013;430:225–30.

    Article  CAS  PubMed  Google Scholar 

  148. Rendo-Urteaga T, Puchau B, Chueca M, et al. Total antioxidant capacity and oxidative stress after a 10-week dietary intervention program in obese children. Eur J Pediatr. 2014;173:609–16.

    Article  CAS  PubMed  Google Scholar 

  149. Annuzzi G, Bozzetto L, Costabile G, et al. Diets naturally rich in polyphenols improve fasting and postprandial dyslipidemia and reduce oxidative stress: a randomized controlled trial. Am J Clin Nutr. 2014;99:463–71.

    Article  CAS  PubMed  Google Scholar 

  150. O’Neil CE, Nicklas TA, Rampersaud GC, et al. 100% Orange juice consumption is associated with better diet quality, improved nutrient adequacy, decreased risk for obesity, and improved biomarkers of health in adults. Nutr J. 2012;11:107.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  151. Codoñer-Franch P, López-Jaén AB, De La Mano-Hernández A, et al. Oxidative markers in children with severe obesity following low-calorie diets supplemented with mandarin juice. Acta Paediatr. 2010;99:1841–6.

    Article  PubMed  CAS  Google Scholar 

  152. Ghavipour M, Sotoudeh G, Ghorbani M. Tomato juice consumption improves blood antioxidative biomarkers in overweight and obese females. Clin Nutr. 2014. pii: S0261-5614(14)00265-9. doi:10.1016/j.clnu.2014.10.012.

    Google Scholar 

  153. Dow CA, Wertheim BC, Patil BS, et al. Daily consumption of grapefruit for 6 weeks reduces urine F2-isoprostanes in overweight adults with high baseline values but has no effect on plasma high-sensitivity C-reactive protein or soluble vascular cellular adhesion molecule 1. J Nutr. 2013;143:1586–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  154. Gulati S, Misra A, Pandey RM, et al. Effects of pistachio nuts on body composition, metabolic, inflammatory and oxidative stress parameters in Asian Indians with metabolic syndrome: a 24-wk, randomized control trial. Nutrition. 2014;30:192–7.

    Article  CAS  PubMed  Google Scholar 

  155. Bahadoran Z, Mirmiran P, Hosseinpanah F, et al. Broccoli sprouts reduce oxidative stress in type 2 diabetes: a randomized double-blind clinical trial. Eur J Clin Nutr. 2011;65:972–7.

    Article  CAS  PubMed  Google Scholar 

  156. Potter AS, Foroudi S, Stamatikos A, et al. Drinking carrot juice increases total antioxidant status and decreases lipid peroxidation in adults. Nutr J. 2011;10:96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  157. Wang Q, Sun Y, Ma A, et al. Effects of vitamin E on plasma lipid status and oxidative stress in Chinese women with metabolic syndrome. Int J Vitam Nutr Res. 2010;80:178–87.

    Article  CAS  PubMed  Google Scholar 

  158. D’Adamo E, Marcovecchio ML, Giannini C, et al. Improved oxidative stress and cardio-metabolic status in obese prepubertal children with liver steatosis treated with lifestyle combined with Vitamin E. Free Radic Res. 2013;47:146–53.

    Article  PubMed  CAS  Google Scholar 

  159. Murer SB, Aeberli I, Braegger CP, et al. Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in a randomized controlled trial in obese children and adolescents. J Nutr. 2014;144:193–201.

    Article  CAS  PubMed  Google Scholar 

  160. Klein EA, Thompson Jr IM, Tangen CM, et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA. 2011;306:1549–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  161. Lin J, Cook NR, Albert C, et al. Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial. J Natl Cancer Inst. 2009;10:14–23.

    Article  CAS  Google Scholar 

  162. Song Y, Xu Q, Park Y, et al. Chen, H. Multivitamins, individual vitamin and mineral supplements, and risk of diabetes among older U.S. adults. Diabetes Care. 2011;34:108–14.

    Article  PubMed Central  PubMed  Google Scholar 

  163. Juraschek SP, Guallar E, Appel LJ, Miller 3rd ER. Effects of vitamin C supplementation on blood pressure: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2012;95:1079–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Myint PK, Luben RN, Wareham NJ, et al. Association between plasma vitamin C concentrations and blood pressure in the European prospective investigation into cancer-Norfolk population-based study. Hypertension. 2011;58:372–9.

    Article  CAS  PubMed  Google Scholar 

  165. Pfister R, Sharp SJ, Luben R, et al. Plasma vitamin C predicts incident heart failure in men and women in European Prospective Investigation into Cancer and Nutrition-Norfolk prospective study. Am Heart J. 2011;162:246–53.

    Article  CAS  PubMed  Google Scholar 

  166. Suzuki K, Inoue T, Hioki R, et al. Association of abdominal obesity with decreased serum levels of carotenoids in a healthy Japanese population. Clin Nutr. 2006;25:780–9.

    Article  CAS  PubMed  Google Scholar 

  167. Hozawa A, Jacobs Jr DR, Steffes MW, et al. Relationships of circulating carotenoid concentrations with several markers of inflammation, oxidative stress, and endothelial dysfunction: the Coronary Artery Risk Development in Young Adults (CARDIA)/Young Adult Longitudinal Trends in Antioxidants (YALTA) study. Clin Chem. 2007;53:447–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  168. Hozawa A, Jacobs Jr DR, Steffes MW, et al. Circulating carotenoid concentrations and incident hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Hypertens. 2009;27:237–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  169. Bjelakovic G, Nikolova D, Gluud LL, et al. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA. 2007;297:842–57.

    Article  CAS  PubMed  Google Scholar 

  170. Pilar Valdecantos M, Prieto-Hontoria PL, Pardo V, et al. Essential role of NRF2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015. pii: S0891-5849(15)00143-4. doi:10.1016/j.freeradbiomed.2015.03.019.

    Google Scholar 

  171. Gianturco V, Bellomo A, D’Ottavio E, et al. Impact of therapy with alpha-lipoic acid (ALA) on the oxidative stress in the controlled NIDDM: a possible preventive way against the organ dysfunction? Arch Gerontol Geriatr. 2009;49:129–33.

    Article  CAS  PubMed  Google Scholar 

  172. Yan W, Li N, Hu X, et al. Effect of oral ALA supplementation on oxidative stress and insulin sensitivity among overweight/obese adults: a double-blinded, randomized, controlled, cross-over intervention trial. Int J Cardiol. 2013;167:602–3.

    Article  PubMed  Google Scholar 

  173. Huerta AE, Navas-Carretero S, Prieto-Hontoria PL, et al. Effects of α-lipoic acid and eicosapentaenoic acid in overweight and obese women during weight loss. Obesity (Silver Spring). 2015;23:313–21.

    Article  CAS  Google Scholar 

  174. Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL, et al. α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochim Biophys Acta. 2015;1851:273–81.

    Article  PubMed  CAS  Google Scholar 

  175. Baret P, Septembre-Malaterre A, Rigoulet M, et al. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. Int J Biochem Cell Biol. 2013;45:167–74.

    Article  CAS  PubMed  Google Scholar 

  176. Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vascul Pharmacol. 2013;58:3–20.

    Article  CAS  PubMed  Google Scholar 

  177. Tomé-Carneiro J, Gonzálvez M, Larrosa M, et al. Grape resveratrol increases serum adiponectin and downregulates inflammatory genes in peripheral blood mononuclear cells: a triple-blind, placebo-controlled, one-year clinical trial in patients with stable coronary artery disease. Cardiovasc Drugs Ther. 2013;27:37–48.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  178. Nagao T, Meguro S, Hase T, et al. Catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring). 2009;17:310–7.

    Article  CAS  Google Scholar 

  179. Bogdanski P, Suliburska J, Szulinska M, et al. Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res. 2012;32:421–7.

    Article  CAS  PubMed  Google Scholar 

  180. Zingg JM, Hasan ST, Meydani M. Molecular mechanisms of hypolipidemic effects of curcumin. Biofactors. 2013;39:101–21.

    Article  CAS  PubMed  Google Scholar 

  181. Behloul N, Wu G. Genistein: a promising therapeutic agent for obesity and diabetes treatment. Eur J Pharmacol. 2013;698:31–8.

    Article  CAS  PubMed  Google Scholar 

  182. Hurt RT, Wilson T. Geriatric obesity: evaluating the evidence for the use of flavonoids to promote weight loss. J Nutr Gerontol Geriatr. 2012;31:269–89.

    Article  PubMed  Google Scholar 

  183. Bolca S, Van de Wiele T, Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol. 2013;24:220–5.

    Article  CAS  PubMed  Google Scholar 

  184. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913–6.

    Article  CAS  PubMed  Google Scholar 

  185. Diamant M, Blaak EE, de Vos WM. Do nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev. 2011;12:272–81.

    Article  CAS  PubMed  Google Scholar 

  186. Kullisaar T, Songisepp E, Mikelsaar M, et al. Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr. 2003;90:449–56.

    Article  CAS  PubMed  Google Scholar 

  187. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, et al. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28:539–43.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabella Savini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savini, I., Gasperi, V., Catani, M.V. (2016). Oxidative Stress and Obesity. In: Ahmad, S., Imam, S. (eds) Obesity. Springer, Cham. https://doi.org/10.1007/978-3-319-19821-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19821-7_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19820-0

  • Online ISBN: 978-3-319-19821-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics