Skip to main content

Hereditary Nonpolyposis Colorectal Cancer and Lynch Syndrome

  • Chapter
Molecular Pathology in Clinical Practice

Abstract

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant cancer disorder associated with a greatly increased risk of colorectal, uterine, and other cancers. Most cases of HNPCC are due to inherited mutations in DNA mismatch repair (MMR) genes and their encoded proteins which correct errors made during DNA replication. HNPCC associated with inherited MMR defects is also called Lynch syndrome. Additionally, sporadic cancers occurring in individuals without HNPCC may have diminished expression of MMR protein(s) due to epigenetic silencing. Defective MMR function leads to reduced fidelity of DNA synthesis and microsatellite instability (MSI), the accumulation of mutations in repetitive sequences of DNA called microsatellites. Testing for defective MMR can be done directly by immunohistochemical staining for MMR proteins or indirectly by PCR fragment analysis of microsatellites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lynch HT, et al. Hereditary nonpolyposis colorectal cancer (Lynch syndromes I and II). I Clinical description of resource. Cancer. 1985;56(4):934–8.

    Article  CAS  PubMed  Google Scholar 

  2. Bellizzi AM, Frankel WL. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv Anat Pathol. 2009;16(6):405–17.

    Article  CAS  PubMed  Google Scholar 

  3. Boland CR. Evolution of the nomenclature for the hereditary colorectal cancer syndromes. Fam Cancer. 2005;4(3):211–8.

    Article  PubMed  Google Scholar 

  4. Jass JR. Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term. World J Gastroenterol. 2006;12(31):4943–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lindor NM. Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome. Surg Oncol Clin N Am. 2009;18(4):637–45.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Lindor NM, et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA. 2005;293(16):1979–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Vasen HF, et al. The International Collaborative Group on HNPCC. Anticancer Res. 1994;14(4B):1661–4.

    CAS  PubMed  Google Scholar 

  8. Vasen HF, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453–6.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez-Bigas MA, et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst. 1997;89(23):1758–62.

    Article  CAS  PubMed  Google Scholar 

  10. Umar A, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rodriguez-Moranta F, et al. Clinical performance of original and revised Bethesda guidelines for the identification of MSH2/MLH1 gene carriers in patients with newly diagnosed colorectal cancer: proposal of a new and simpler set of recommendations. Am J Gastroenterol. 2006;101(5):1104–11.

    Article  PubMed  Google Scholar 

  12. Wolf B, et al. Efficiency of the revised Bethesda guidelines (2003) for the detection of mutations in mismatch repair genes in Austrian HNPCC patients. Int J Cancer. 2006;118(6):1465–70.

    Article  CAS  PubMed  Google Scholar 

  13. Hampel H, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008;26(35):5783–8.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Truta B, et al. Tumor histology helps to identify Lynch syndrome among colorectal cancer patients. Fam Cancer. 2008;7(3):267–74.

    Article  PubMed  Google Scholar 

  15. Jenkins MA, et al. Pathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study. Gastroenterology. 2007;133(1):48–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Alexander J, et al. Histopathological identification of colon cancer with microsatellite instability. Am J Pathol. 2001;158(2):527–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Lu KH, et al. Gynecologic cancer as a “sentinel cancer” for women with hereditary nonpolyposis colorectal cancer syndrome. Obstet Gynecol. 2005;105(3):569–74.

    Article  PubMed  Google Scholar 

  18. Dunlop MG, et al. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet. 1997;6(1):105–10.

    Article  CAS  PubMed  Google Scholar 

  19. Jenkins MA, et al. Cancer risks for mismatch repair gene mutation carriers: a population-based early onset case-family study. Clin Gastroenterol Hepatol. 2006;4(4):489–98.

    Article  CAS  PubMed  Google Scholar 

  20. Aarnio M, et al. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer. 1999;81(2):214–8.

    Article  CAS  PubMed  Google Scholar 

  21. Bonadona V, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304–10.

    Article  CAS  PubMed  Google Scholar 

  22. Engel C, et al. Risks of less common cancers in proven mutation carriers with lynch syndrome. J Clin Oncol. 2012;30(35):4409–15.

    Google Scholar 

  23. Aaltonen LA, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812–6.

    Article  CAS  PubMed  Google Scholar 

  24. Ionov Y, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363(6429):558–61.

    Article  CAS  PubMed  Google Scholar 

  25. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681–710.

    Article  CAS  PubMed  Google Scholar 

  27. Strand M, et al. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature. 1993;365(6443):274–6.

    Article  CAS  PubMed  Google Scholar 

  28. Fishel R, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027–38.

    Article  CAS  PubMed  Google Scholar 

  29. Bronner CE, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258–61.

    Article  CAS  PubMed  Google Scholar 

  30. Jass JR. Colorectal adenomas in surgical specimens from subjects with hereditary non-polyposis colorectal cancer. Histopathology. 1995;27(3):263–7.

    Article  CAS  PubMed  Google Scholar 

  31. Iino H, et al. DNA microsatellite instability and mismatch repair protein loss in adenomas presenting in hereditary non-polyposis colorectal cancer. Gut. 2000;47(1):37–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Parsons R, et al. Mismatch repair deficiency in phenotypically normal human cells. Science. 1995;268(5211):738–40.

    Article  CAS  PubMed  Google Scholar 

  33. Vilkki S, et al. Extensive somatic microsatellite mutations in normal human tissue. Cancer Res. 2001;61(11):4541–4.

    CAS  PubMed  Google Scholar 

  34. Ichikawa Y, et al. Microsatellite instability and immunohistochemical analysis of MLH1 and MSH2 in normal endometrium, endometrial hyperplasia and endometrial cancer from a hereditary nonpolyposis colorectal cancer patient. Jpn J Clin Oncol. 2002;32(3):110–2.

    Article  PubMed  Google Scholar 

  35. Pino MS, et al. Deficient DNA mismatch repair is common in Lynch syndrome-associated colorectal adenomas. J Mol Diagn. 2009;11(3):238–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Li GM. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  37. de la Chapelle A. Genetic predisposition to colorectal cancer. Nat Rev Cancer. 2004;4(10):769–80.

    Article  PubMed  Google Scholar 

  38. Verma L, et al. Mononucleotide microsatellite instability and germline MSH6 mutation analysis in early onset colorectal cancer. J Med Genet. 1999;36(9):678–82.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Liu B, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet. 1995;9(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  40. Peltomaki P. Role of DNA mismatch repair defects in the pathogenesis of human cancer. J Clin Oncol. 2003;21(6):1174–9.

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, et al. Clinical and pathological characteristics of sporadic colorectal carcinomas with DNA replication errors in microsatellite sequences. Am J Pathol. 1994;145(1):148–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Young J, et al. Features of colorectal cancers with high-level microsatellite instability occurring in familial and sporadic settings: parallel pathways of tumorigenesis. Am J Pathol. 2001;159(6):2107–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Snover DC, et al. Serrated polyps of the large intestine: a morphologic and molecular review of an evolving concept. Am J Clin Pathol. 2005;124(3):380–91.

    Article  PubMed  Google Scholar 

  44. Thibodeau SN, et al. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res. 1996;56(21):4836–40.

    CAS  PubMed  Google Scholar 

  45. Kane MF, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57(5):808–11.

    CAS  PubMed  Google Scholar 

  46. Deng G, et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res. 2004;10(1 Pt 1):191–5.

    Article  CAS  PubMed  Google Scholar 

  47. Domingo E, et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet. 2004;41(9):664–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Rajagopalan H, et al. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 2002;418(6901):934.

    Article  CAS  PubMed  Google Scholar 

  49. Mutch DG, et al. RAS/RAF mutation and defective DNA mismatch repair in endometrial cancers. Am J Obstet Gynecol. 2004;190(4):935–42.

    Article  CAS  PubMed  Google Scholar 

  50. Crepin M, et al. Evidence of constitutional MLH1 epimutation associated to transgenerational inheritance of cancer susceptibility. Hum Mutat. 2012;33(1):180–8.

    Google Scholar 

  51. Planck M, et al. Somatic frameshift alterations in mononucleotide repeat-containing genes in different tumor types from an HNPCC family with germline MSH2 mutation. Genes Chromosomes Cancer. 2000;29(1):33–9.

    Article  CAS  PubMed  Google Scholar 

  52. Woerner SM, et al. Microsatellite instability of selective target genes in HNPCC-associated colon adenomas. Oncogene. 2005;24(15):2525–35.

    Article  CAS  PubMed  Google Scholar 

  53. Dove-Edwin I, et al. Prospective results of surveillance colonoscopy in dominant familial colorectal cancer with and without Lynch syndrome. Gastroenterology. 2006;130(7):1995–2000.

    Article  PubMed  Google Scholar 

  54. Vasen HF, et al. One to 2-year surveillance intervals reduce risk of colorectal cancer in families with Lynch syndrome. Gastroenterology. 2010;138(7):2300–6.

    Article  PubMed  Google Scholar 

  55. Lindor NM, et al. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. JAMA. 2006;296(12):1507–17.

    Article  CAS  PubMed  Google Scholar 

  56. Burn J, et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet. 2011;378(9809):2081–7.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Yang KY, et al. A cost-effectiveness analysis of prophylactic surgery versus gynecologic surveillance for women from hereditary non-polyposis colorectal cancer (HNPCC) Families. Fam Cancer. 2011;10(3):535–43.

    Article  PubMed  Google Scholar 

  58. Parry S, et al. Metachronous colorectal cancer risk for mismatch repair gene mutation carriers: the advantage of more extensive colon surgery. Gut. 2011;60(7):950–7.

    Article  PubMed  Google Scholar 

  59. Terdiman JP. It is time to get serious about diagnosing Lynch syndrome (hereditary nonpolyposis colorectal cancer with defective DNA mismatch repair) in the general population. Gastroenterology. 2005;129(2):741–4.

    Article  PubMed  Google Scholar 

  60. Hampel H. Point: justification for Lynch syndrome screening among all patients with newly diagnosed colorectal cancer. J Natl Compr Canc Netw. 2010;8(5):597–601.

    PubMed  Google Scholar 

  61. Mvundura M, et al. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer. Genet Med. 2010;12(2):93–104.

    Article  PubMed  Google Scholar 

  62. Ladabaum U, et al. Strategies to identify the Lynch syndrome among patients with colorectal cancer: a cost-effectiveness analysis. Ann Intern Med. 2011;155(2):69–79.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Benatti P, et al. Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 2005;11(23):8332–40.

    Article  CAS  PubMed  Google Scholar 

  64. Lothe RA, et al. Genomic instability in colorectal cancer: relationship to clinicopathological variables and family history. Cancer Res. 1993;53(24):5849–52.

    CAS  PubMed  Google Scholar 

  65. Barnetson RA, et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med. 2006;354(26):2751–63.

    Article  CAS  PubMed  Google Scholar 

  66. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23(3):609–18.

    Article  CAS  PubMed  Google Scholar 

  67. Perea J, et al. Approach to early-onset colorectal cancer: clinicopathological, familial, molecular and immunohistochemical characteristics. World J Gastroenterol. 2010;16(29):3697–703.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Halling KC, et al. Microsatellite instability and 8p allelic imbalance in stage B2 and C colorectal cancers. J Natl Cancer Inst. 1999;91(15):1295–303.

    Article  CAS  PubMed  Google Scholar 

  69. Hutchins G, et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol. 2011;29(10):1261–70.

    Article  PubMed  Google Scholar 

  70. Gray R, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370(9604):2020–9.

    Article  PubMed  Google Scholar 

  71. Ribic CM, et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med. 2003;349(3):247–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Sargent DJ, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol. 2010;28(20):3219–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Hegde MR, Roa BB. Genetic testing for hereditary nonpolyposis colorectal cancer (HNPCC). Curr Protoc Hum Genet. 2009;Chapter 10:Unit 10 12.

    Google Scholar 

  74. Ou J, et al. A database to support the interpretation of human mismatch repair gene variants. Hum Mutat. 2008;29(11):1337–41.

    Article  CAS  PubMed  Google Scholar 

  75. Peltomaki P, Vasen HF. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology. 1997;113(4):1146–58.

    Article  CAS  PubMed  Google Scholar 

  76. Boland CR, et al. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch syndrome: from bench to bedside. Fam Cancer. 2008;7(1):41–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Mangold E, et al. Tumours from MSH2 mutation carriers show loss of MSH2 expression but many tumours from MLH1 mutation carriers exhibit weak positive MLH1 staining. J Pathol. 2005;207(4):385–95.

    Article  CAS  PubMed  Google Scholar 

  78. Overbeek LI, et al. Interpretation of immunohistochemistry for mismatch repair proteins is only reliable in a specialized setting. Am J Surg Pathol. 2008;32(8):1246–51.

    Article  PubMed  Google Scholar 

  79. Muller A, et al. Challenges and pitfalls in HNPCC screening by microsatellite analysis and immunohistochemistry. J Mol Diagn. 2004;6(4):308–15.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Wahlberg SS, et al. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res. 2002;62(12):3485–92.

    CAS  PubMed  Google Scholar 

  81. Zighelboim I, et al. Epitope-positive truncating MLH1 mutation and loss of PMS2: implications for IHC-directed genetic testing for Lynch syndrome. Fam Cancer. 2009;8(4):501–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Shia J, et al. Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel. Am J Surg Pathol. 2009;33(11):1639–45.

    Article  PubMed  Google Scholar 

  83. Bao F, et al. Neoadjuvant therapy induces loss of MSH6 expression in colorectal carcinoma. Am J Surg Pathol. 2010;34(12):1798–804.

    Article  PubMed  Google Scholar 

  84. College of American Pathologists 2012 MSI-A participant summary; 2012. College of American Pathologists.

    Google Scholar 

  85. Bacher JW, et al. Development of a fluorescent multiplex assay for detection of MSI-High tumors. Dis Markers. 2004;20(4-5):237–50.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Boland CR, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58(22):5248–57.

    CAS  PubMed  Google Scholar 

  87. Laiho P, et al. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res. 2002;62(4):1166–70.

    CAS  PubMed  Google Scholar 

  88. Tomlinson I, et al. Does MSI-low exist? J Pathol. 2002;197(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  89. Murphy KM, et al. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn. 2006;8(3):305–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Suraweera N, et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002;123(6):1804–11.

    Article  CAS  PubMed  Google Scholar 

  91. Funkhouser Jr WK, et al. Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn. 2012;14(2):91–103.

    Article  CAS  PubMed  Google Scholar 

  92. Peltomaki P. Epigenetic mechanisms in the pathogenesis of Lynch syndrome. Clin Genet. 2014;85(5):403–12.

    Google Scholar 

  93. Esteller M, et al. MLH1 promoter hypermethylation is associated with the microsatellite instability phenotype in sporadic endometrial carcinomas. Oncogene. 1998;17(18):2413–7.

    Article  CAS  PubMed  Google Scholar 

  94. Feng YZ, et al. BRAF mutation in endometrial carcinoma and hyperplasia: correlation with KRAS and p53 mutations and mismatch repair protein expression. Clin Cancer Res. 2005;11(17):6133–8.

    Article  CAS  PubMed  Google Scholar 

  95. Peterson LM, et al. Molecular characterization of endometrial cancer: a correlative study assessing microsatellite instability, MLH1 hypermethylation, DNA mismatch repair protein expression, and PTEN, PIK3CA, KRAS, and BRAF mutation analysis. Int J Gynecol Pathol. 2012;31(3):195–205.

    Article  CAS  PubMed  Google Scholar 

  96. Velayos FS, et al. Low rate of microsatellite instability in young patients with adenomas: reassessing the Bethesda guidelines. Am J Gastroenterol. 2005;100(5):1143–9.

    Article  CAS  PubMed  Google Scholar 

  97. Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part I The utility of immunohistochemistry. J Mol Diagn. 2008;10(4):293–300.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Zhang L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome. Part II The utility of microsatellite instability testing. J Mol Diagn. 2008;10(4):301–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Radu OM, et al. Challenging cases encountered in colorectal cancer screening for Lynch syndrome reveal novel findings: nucleolar MSH6 staining and impact of prior chemoradiation therapy. Hum Pathol. 2011;42(9):1247–58.

    Article  PubMed  Google Scholar 

  100. Grenert JP, et al. Concordance between Microsatellite Instability (MSI) testing and Mismatch Repair Protein Immunohistochemistry (MMR IHC) and analysis of discordant cases. Mod Pathol. 2011;24 Suppl 1:149A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Grenert M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Grenert, J.P. (2016). Hereditary Nonpolyposis Colorectal Cancer and Lynch Syndrome. In: Leonard, D. (eds) Molecular Pathology in Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-19674-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19674-9_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19673-2

  • Online ISBN: 978-3-319-19674-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics