Skip to main content

Multifunctional Properties of Bulk Nanostructured Metallic Materials

  • Chapter
  • First Online:
Bulk Nanostructured Materials with Multifunctional Properties

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

This chapter focuses on multifunctional properties of bulk nanostructured metallic materials and structure–properties relationship therein. The most important structural factors affecting mechanical, physical, and chemical properties of the nanomaterials are discussed, and the strategies to their further improvement are outlined. Special attention is paid to nanostructural design for simultaneous improvement of mutually exclusive properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that size of specimens is the main limitation for investigation of fatigue behavior of SPD-processed nanostructured metallic materials. Thus, in most of investigations, ECAP-processed objects were studied, which have size sufficient for the preparation of fatigue specimens. However, very recent modifications and/or upscaling of other SPD techniques, such as HPT, allowed fabrication of larger samples. Research on fatigue behavior of nanostructured metallic materials produced by other SPD techniques has just started [84].

References

  1. Hall, E.O.: The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747 (1951)

    Google Scholar 

  2. Petch, N.J.: The cleavage strength of polycrystals. J Iron Steel Inst. 174, 25 (1953)

    Google Scholar 

  3. Valiev, R.Z.: Structure and mechanical properties of ultrafine grained metals. Mater. Sci. Eng. 59, A234–A236 (1997)

    Google Scholar 

  4. Valiev, R.Z., Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51, 881 (2006)

    Google Scholar 

  5. Morris, D.G. In: Whang, S.H. (ed.) Nanostructured Metals and Alloys. Processing, Microstructure, Mechanical Properties and Applications, p. 297. Woodhead Publishing Limited, Cambridge (2011)

    Google Scholar 

  6. Zhu, Y.T., Han, B.Q., Lavernia, E.J.: In: Zehetbauer, M.J., Zhu, Y.T. (eds.) Bulk Nanostructured Materials, p. 89. WILEY-VCH Verlag GmbH & Co, Weinheim (2009)

    Google Scholar 

  7. Ovid’ko, I.A. In: Whang, S.H. (ed.) Nanostructured Metals and Alloys. Processing, Microstructure, Mechanical Properties and Applications, p. 430. Woodhead Publishing Limited, Cambridge (2011)

    Google Scholar 

  8. Zehetbauer, M.J., Estrin, Y.: In: Zehetbauer, M.J., Zhu, Y.T. (eds.) Bulk Nanostructured Materials, p. 109. WILEY-VCH Verlag GmbH & Co, Weinheim (2009)

    Google Scholar 

  9. Koch, C.C. In: Zehetbauer, M.J., Zhu Bulk, Y.T. (eds.) Nanostructured Materials, p. 3. WILEY-VCH Verlag GmbH & Co, Weinheim (2009)

    Google Scholar 

  10. Pande, C., Cooper, K.: Nanomechanics of Hall-Petch relationship in nanocrystalline materials. Prog. Mater Sci. 54, 689 (2009)

    Google Scholar 

  11. Mayers, M.A., Mishra, A., Benson, D.J.: Mechanical properties of nanocrystalline materials. Prog. Mater Sci. 51, 427 (2006)

    Google Scholar 

  12. Valiev, R.Z., Enikeev, N.A., Murashkin, M.Y., Kazykhanov, V.U., Sauvage, X.: On the origin of extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scripta Mater. 63, 949 (2010)

    Google Scholar 

  13. Valiev, R.Z., Enikeev, N.A., Murashkin, M.Y., Aleksandrov, S.E., Goldshtein, R.V.: Superstrength of ultrafine-grained aluminum alloys produced by severe plastic deformation. Doklady Phys. 55(6), 267 (2010)

    Google Scholar 

  14. Valiev, R.Z., Langdon, T.G.: The art and science of tailoring materials by nanostructuring for advanced properties using SPD techniques. Adv. Eng. Mater. 12, 677 (2010)

    Google Scholar 

  15. Valiev, R.Z., Enikeev, N.A., Langdon, T.G.: Towards superstrength of nanostructured metals and alloys produced by SPD. Kovove Mater. 49, 1 (2011)

    Google Scholar 

  16. Krasilnikov, N., Lojkowski, W., Pakiela, Z., Valiev, R.Z.: Tensile strength and ductility of ultrafine-grained nickel processed by severe plastic deformation. Mater. Sci. Eng., A 37, 330 (2005)

    Google Scholar 

  17. Thompson, A.W.: Yielding in nickel as a function of grain or cell size. Acta Metall. 23, 1337 (1975)

    Google Scholar 

  18. Xiao, C., Mirshams, R.A., Whang, S.H., Yin, W.M.: Tensile behavior and fracture in nickel and carbon doped nanocrystalline nickel. Mater. Sci. Eng., A 301, 35 (2001)

    Google Scholar 

  19. Ebrahimi, F., Bourne, G.R., Kelly, M.S., Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Nanostr. Mater. 11, 343 (1999)

    Google Scholar 

  20. Hughes, D.A., Hansen, N.: Microstructure and strength of nickel at large strains. Acta Mater. 48, 2985 (2000)

    Google Scholar 

  21. Tsuji, N.: In: Zhu, Y.T., Varyukhin, V. (eds.) Nanostructured Materials by High-Pressure Severe Plastic Deformation, p. 227. Springer, Netherlands (2006)

    Google Scholar 

  22. Furukawa, M., Horita, Z., Nemoto, M., Valiev, R.Z., Langdon, T.G.: Factors Influencing the flow and hardness of materials with ultrafine grain sizes. Phil. Mag. A 78, 203 (1998)

    Google Scholar 

  23. Valiev, R.Z., Ivanisenko, Y.V., Rauch, E.F., Baudelet, B.: Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. Acta Mater. 44, 4705 (1996)

    Google Scholar 

  24. Jones, R.L., Conrad, H.: The effect of grain size on the strength of alpha titanium. Trans. Met. Soc. AIME 245, 779 (1969)

    Google Scholar 

  25. Charit, I., Murty, K.L.: Effect of radiation exposure on the Hall-Petch relation and its significance of radiation embrittlement in iron and ferritic steels. Trans. SMiRT 19, 1–6 (2007)

    Google Scholar 

  26. Malow, T.R., Koch, C.C.: Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metall. Mater. Trans. A 29, 2285 (1998)

    Google Scholar 

  27. Sergueeva, A.V., Stolyarov, V.V., Valiev, R.Z., Mukherjee, A.K.: Superplastic behavior of ultrafine-grained Ti-6Al-4V alloys. Mater. Sci. Eng., A 323, 318 (2002)

    Google Scholar 

  28. Semenova, I.P., Salimgareeva, G., Da Costa, G., Lefebvre, W., Valiev, R.Z.: Enhanced strength and ductility of ultrafine-grained Ti processed by severe plastic deformation. Adv. Eng. Mater. 12, 803 (2010)

    Google Scholar 

  29. Ivanisenko, Y., Sergueeva, A.V., Minkow, A., Valiev, R.Z., Fecht, H.J. In: Zehetbauer, M.J., Valiev, R.Z. (eds.) Nanomaterials by Severe Plastic Deformation, p. 453. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  30. Chukin, M.V., Koptseva, N.V., Valiev, R.Z., Yakovleva, I.L., Zrnik, J., Covarik, T.: The diffraction submicroscopic analysis of the submicrocrystal and nanocrystal structure of constructional carbon steels after equal channel angle pressing and further deformation. Vestnik MGTU 1, 31 (2008)

    Google Scholar 

  31. Sabirov, I., Murashkin, MYu., Valiev, R.Z.: Nanostructured aluminium alloys produced by severe plastic deformation: new horizons in development. Mater. Sci. Eng. A. 560, 1–24 (2013)

    Google Scholar 

  32. Li, J.S.M.: In: Li, J.S.M. (ed.) Mechanical Properties of Nanocrystalline Materials, p. 193. Pan Stanford Publ, Singapore (2011)

    Google Scholar 

  33. Firstov, S.A., Rogul, T.G., Marushko, V.T., Sagaydak, V.A.: Structure and microhardness of polycrystalline chromium produced by magnetron sputtering. Issues Mater. Sci. 33, 201 (2003)

    Google Scholar 

  34. Firstov, S.A., Rogul, T.G., Shut, O.A.: Transition from microstructures to nanostructures and ultimate hardening. Funct. Mater. 16, 4 (2009)

    Google Scholar 

  35. Valiev, R.Z., Kozlov, E.V., Ivanov, YuF, Lian, J., Nazarov, A.A., Baudelet, B.: Deformation behaviour of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994)

    Google Scholar 

  36. Liddicoat, P.V., Liao, X.Z., Zhao, Y., Zhu, Y.T., Murashkin, M.Y., Lavernia, E.J., Valiev, R.Z., Ringer, S.P.: Nanostructural hierarchy increases the strength of aluminium alloys. Nature Comm. 1, 63 (2010)

    Google Scholar 

  37. Valiev, R.Z., Murashkin, M.Y., Bobruk, E.V., Raab, G.I.: Grain refinement and mechanical behavior of the Al alloy subjected to the new SPD technique. Mater. Trans. 50, 87 (2009)

    Google Scholar 

  38. Abramova, M.M., Enikeev, N.A., Valiev, R.Z., Etienne, A., Radiguet, B., Ivanisenko, Y., Sauvage, X.: Grain boundary segregation induced strengthening of an ultrafine-grained austenitic stainless steel. Mater. Lett. 136, 349–352 (2014)

    Google Scholar 

  39. Scheriau, S., Zhang, Z., Kleber, S., Pippan, R.: Deformation mechanisms of a modified 316L austenitic steel subjected to high pressure torsion. Mater. Sci. Eng., A 528, 2776–2786 (2011)

    Google Scholar 

  40. Krawczynska, A.T., Lewandowska, M., Pippan, R., Kurzydlowski, K.J.: The effect of high pressure torsion on structural refinement and mechanical properties of an austenitic stainless steel. J. Nanosci. Nanotech. 13, 1–4 (2013)

    Google Scholar 

  41. Wang, H., Shuro, I., Umemoto, M., Kuo, H.H., Todaka, Y.: Annealing behavior of nano-crystalline austenitic SUS316L produced by HPT. Mater. Sci. Eng., A 556, 906–910 (2012)

    Google Scholar 

  42. Valiev, R.Z., Zhilyaev, A.P., Langdon, T.G.: Bulk Nanostructured Materials: Fundamentals and Applications, 456 p. Wiley-TMS, New York (2013)

    Google Scholar 

  43. Raabe, D., Herbig, M., Sandlöbes, S., Li, Y., Tytko, D., Kuzmina, M., Ponge, D., Choi, P.P.: Grain boundary segregation engineering in metallic alloys: a pathway to the design of interfaces. Curr. Opin. Solid State Mater. Sci. 18, 253–261 (2014)

    Google Scholar 

  44. Raabe, D., Choi, P.P., Li, Y., Kostka, A., Sauvage, X., Lecouturier, F., Hono, K., Kirchheim, R., Pippan, R., Embury, D.: Metallic composites processed via extreme deformation: toward the limits of strength in bulk materials. MRS Bull. 35, 982 (2010)

    Google Scholar 

  45. Morris, D.G. (ed.): Mechanical Behaviour of Nanostructured Materials. Trans. Tech. Publications, Uetikon-Zurich (1998)

    Google Scholar 

  46. Koch, C.C.: Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scripta Mater. 49, 657 (2003)

    Google Scholar 

  47. Horita, Z., Fujinami, T., Nemoto, M., Langdon, T.G.: Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall. Mater. Trans. 31A, 691 (2000)

    Google Scholar 

  48. Zhu, Y.T., Langdon, T.G.: The fundamentals of nanostructured materials processed by severe plastic deformation. JOM 56(10), 58 (2004)

    Google Scholar 

  49. Zhao, Y., Zhu, Y.T., Lavernia, E.J.: Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 12, 76 (2010)

    Google Scholar 

  50. Ma, E.: Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys. JOM 58(4), 49 (2006)

    Google Scholar 

  51. Dieter, G.E.: Mechanical Metallurgy. McGraw-Hill, Boston (1986)

    Google Scholar 

  52. Hart, E.W.: Theory of the tensile test. Acta Metal. Mater. 15, 351 (1967)

    Google Scholar 

  53. Valiev, R.Z.: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511–516 (2004)

    Google Scholar 

  54. Valiev, R.Z., Alexandrov, I.V., Lowe, T.C., Zhu, Y.T.: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17, 5 (2002)

    Google Scholar 

  55. Horita, Z., Ohashi, K., Fujita, T., Kaneko, K., Langdon, T.G.: Achieving high strength and high ductility in precipitation-hardened alloys. Adv. Mater. 17, 1599 (2005)

    Google Scholar 

  56. Wang, Y., Chen, M., Zhou, F., Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002)

    Google Scholar 

  57. Valiev, R.Z., Sergueeva, A.V., Mukherjee, A.K.: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scripta Mater. 49, 669 (2003)

    Google Scholar 

  58. Parker, E.R.: Materials Data Book for Engineers and Scientists. McGraw-Hill, New York (1967)

    Google Scholar 

  59. Brandes, E.A., Brook, G.B. In: Smithells Metals Reference Book, 7th edn, Chap. 22. Butterworth–Heinemann, Oxford (1992)

    Google Scholar 

  60. Hoeppel, H.W., May, J., Eisenlohr, P., Goeken, M.: Strain-rate sensitivity of ultrafine-grained materials. Z. Metallkd. 96, 566 (2005)

    Google Scholar 

  61. May, J., Hoeppel, H.W., Goeken, M.: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation. Scripta Mater. 53, 189 (2005)

    Google Scholar 

  62. Dalla Torre, F., Lapovok, R., Sandlin, J., Thomson, P.F., Davies, C.H.J., Pereloma, E.V.: Microstructures and properties of copper processed by equal channel angular extrusion for 1–16 passes. Acta Mater. 52, 4819 (2004)

    Google Scholar 

  63. Zhang, X., Wang, H., Scattergood, R.O., Narayan, J., Koch, C.C., Sergueeva, A.V., Mukherjee, A.K.: Studies of deformation mechanisms in ultra-fine-grained and nanostructured Zn. Acta Mater. 50, 4823 (2002)

    Google Scholar 

  64. Mughrabi, H., Hoeppel, H.W., Kautz, M., Valiev, R.Z.: Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation. Z. Metallkd. 94, 1079 (2003)

    Google Scholar 

  65. Park, Y.S., Chung, K.H., Kim, N.J., Lavernia, E.J.: Microstructural investigation of nanocrystalline bulk Al–Mg alloy fabricated by cryomilling and extrusion. Mater. Sci. Eng., A 374, 211 (2004)

    Google Scholar 

  66. Zhao, Y.H., Zhu, Y., Lavernia, E.J.: Strategies for improving tensile ductility of bulk nanostructured materials. Adv. Eng. Mater. 12, 769–778 (2010)

    Google Scholar 

  67. Ebrahimi, F.,  Bourne, G.R., Kelly, M.S., Matthews, T.E.: Mechanical properties of nanocrystalline nickel produced by electrodeposition. Scripta Mater. 11, 343 (1999)

    Google Scholar 

  68. Zhao, Y.H., Liao, X.Z., Cheng, S., Ma, E., Zhu, Y.T.: Simultaneously increasing the ductility and strength of nanostructured alloys. Adv. Mater. 18, 2280 (2006)

    Google Scholar 

  69. Cheng, S., Zhao, Y.H., Zhu, Y.T., Ma, E.: Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 55, 5822 (2007)

    Google Scholar 

  70. Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004)

    Google Scholar 

  71. Zhao, Y.H., Bingert, J.F., Liao, X.Z., Cui, B.Z., Han, K., Sergueeva, A.V., Mukherjee, A.K., Valiev, R.Z., Langdon, T.G., Zhu, Y.T.: Simultaneously increasing the ductility and strength of ultra-fine-grained pure copper. Adv. Mater. 18, 2949 (2006)

    Google Scholar 

  72. Tao, N., Lu, K.: Dynamic plastic deformation (DPD): a novel technique for synthesizing bulk nanostructured metals. J. Mater. Sci. Tech. 23(6), 771 (2007)

    Google Scholar 

  73. Ungar, T., Balogh, L., Zhao, Y.H., Zhu, Y.T., Horita, Z., Xu, C., Langdon, T.G.: Acta Mater. 56, 809 (2008)

    Google Scholar 

  74. Son, Y.I., Lee, Y.K., Park, K.T., Lee, C.S., Shin, D.H.: Ultrafine grained ferrite-martensite dual phase steels fabricated via equal channel angular pressing: microstructure and tensile properties. Acta Mater. 53, 3125 (2005)

    Google Scholar 

  75. Wang, Y., Ma, E., Valiev, R.Z., Zhu, Y.: Tough nanostructured metals at cryogenic temperatures. Adv. Mater. 16, 328 (2004)

    Google Scholar 

  76. Li, Y.I., Zeng, X.H., Blum, W.: Transition from strengthening to softening by grain boundaries in ultrafine-grained Cu. Acta Mater. 52, 5009 (2004)

    Google Scholar 

  77. Valiev, R.Z., Murashkin, MYu., Kilmametov, A.R., Straumal, B.B., Chinh, N.Q., Langdon, T.G.: Unusual super-ductility at room temperature in an ultrafine-grained aluminum alloy. J. Mater. Sci. 45, 4718 (2010)

    Google Scholar 

  78. Moreno-Valle, E.C., Monclus, M.A., Molina-Aldareguia, J.M., Enikeev, N., Sabirov, I.: Biaxial deformation behavior and enhanced formability of ultrafine-grained pure copper. Metall. Mater. Trans. A 44, 2013–2399 (2013)

    Google Scholar 

  79. Suresh, S.: Fatigue of Materials, p. 679. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  80. Hoeppel, H.W., Goeken, M.: Fatigue behavior in nanostructured metals. In: Whang, S.H. (ed.) Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, p. 507. Woodhead Publishing Limited (2011)

    Google Scholar 

  81. Estrin, Y., Vinogradov, A.: Fatigue behavior of light alloys with ultra-fine grain structure produced by severe plastic deformation: an overview. Int. J. Fatigue 32, 898–907 (2010)

    Google Scholar 

  82. Hoeppel, H.W., Kautz, M., Xu, C., Murashkin, M., Langdon, T.G., Valiev, R.Z., Mughrabi, H.: An overview: fatigue behavior of ultra-fine grained metals and alloys. Int. J. Fatigue 28, 1001–1010 (2006)

    Google Scholar 

  83. Mughrabi, H., Hoeppel, H.W., Kautz, M.: Fatigue and microstructure of ultra-fine grained metals produced by severe plastic deformation. Scripta Mater. 51, 807–812 (2004)

    Google Scholar 

  84. Murashkin, M., Sabirov, I., Prosvirnin, D., Ovid'ko, I., Terentiev, V., Valiev, R., Dobatkin, S.: Fatigue behavior of an ultra-fine grained Al-Mg-Si alloy processed by high-pressure torsion. Metals 5, 578 (2015)

    Google Scholar 

  85. De, P.S., Mishra, R.S., Smith, C.B.: Effect of microstructure on fatigue life and fracture morphology in an aluminum alloy. Scripta Mater. 60, 500–503 (2009)

    Google Scholar 

  86. Vinogradov, A., Hashimoto, S., Kopylov, V.I.: Enhanced strength and fatigue life of ultra-fine grain Fe-36Ni Invar alloy. Mater. Sci. Eng., A 355, 277 (2003)

    Google Scholar 

  87. Vinogradov, A., Hashimoto, S.: Multiscale phenomena in fatigue of ultra-fine grain materials—an overview. Mater. Trans. 42, 74–84 (2001)

    Google Scholar 

  88. Gale, F.W., Totemeier, T.C. (eds.) Smithells Reference Book. Elsevier, Amsterdam (2004)

    Google Scholar 

  89. Patlan, V., Vinogradov, A., Higashi, K., Kitagawa, K.: Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 300, 171 (2001)

    Google Scholar 

  90. Cavaliere, P., Cabibbo, M.: Effect of Sc and Zr additions on the microstructure and fatigue properties of AA6106 produced by equal-channel-angular-pressing. Mater. Charact. 59, 197 (2008)

    Google Scholar 

  91. Stolyarov, V.V., Latysh, V.V., Valiev, R.Z., Zhu, Y.T. In Lowe, T.C., Valiev, R.Z. (eds.) Investigations and Applications of Severe Plastic Deformation, p. 367. Kluwer Publishers, Dordrecht (2000)

    Google Scholar 

  92. Vinogradov, AYu., Stolyarov, V.V., Hashimoto, S., Valiev, R.Z.: Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng., A 318, 163–173 (2001)

    Google Scholar 

  93. Kim, W.J., Hyun, C.Y., Kim, H.K.: Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation. Scripta Mater. 54, 1745–1750 (2006)

    Google Scholar 

  94. Vinogradov, A., Hashimoto, S.: Fatigue of severely deformed metals. Adv. Eng. Mater. 5, 351 (2003)

    Google Scholar 

  95. Saitova, L.R., Höppel, H.W., Göken, M., Semenova, I.P., Valiev, R.Z.: Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use. Int. J. Fatigue 31, 322–331 (2009)

    Google Scholar 

  96. Chapetti, M.D., Miyata, H., Tagawa, T., Miyata, T., Fujioka, M.: Fatigue strength of ultra-fine grained steels. Mater. Sci. Eng., A 381, 331–336 (2004)

    Google Scholar 

  97. Vinogradov, A., Washikita, A., Kitagawa, K., Kopylov, V.I.: Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing. Mater. Sci. Eng., A 349, 318–326 (2003)

    Google Scholar 

  98. Chung, C.S., Kim, J.K., Kim, H.K., Kim, W.J.: Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng., A 337, 39–44 (2002)

    Google Scholar 

  99. May, J., Dinkel, M., Amberger, D., Hoeppel, H.W., Goeken, M.: Mechanical properties, dislocation density and grain structure of ultrafine—grained aluminum and aluminum—magnesium alloys. Metall. Mater. Trans. A 38, 1941–1945 (2007)

    Google Scholar 

  100. Avtokratova, E.V., Kaibyshev, R.O., Sitdikov, OSh: Fatigue of a fine-grained high-strength Al-6Mg-Sc alloy produced by equal-channel angular pressing. Phys. Met. Metall. 105, 532 (2008)

    Google Scholar 

  101. Semenova, I.P., Salimgareeva, G.K., Latysh, V.V., Lowe, T.C., Valiev, R.Z.: Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation. Mater. Sci. Eng., A 503, 92–95 (2009)

    Google Scholar 

  102. Lukas, P., Kunz, L., Svoboda, M. In: Proceedings of 9th International Fatigue Conference, 2006, FT62

    Google Scholar 

  103. Hoeppel, H.W., May, J., Prell, M., Goeken, M.: Influence of grain size and precipitation state on the fatigue lives and deformation mechanisms of CP aluminium and AA6082 in the VHCF-regime. Int. J. Fatigue 33, 10–18 (2011)

    Google Scholar 

  104. Malekjani, S., Hodgson, P.D., Cizek, P., Hilditch, T.B.: Cyclic deformation response of ultrafine pure Al. Acta Mater. 59, 5358–5367 (2011)

    Google Scholar 

  105. Canadinc, D., Maier, H.J., Gabor, P., May, J.: On the cyclic deformation response of ultrafine-grained Al–Mg alloys at elevated temperatures. Mater. Sci. Eng., A 496, 114–120 (2008)

    Google Scholar 

  106. Mughrabi, H., Hoeppel, H.W.: Cyclic deformation and fatigue properties of ultrafine grain size materials: current status and some criteria for improvement of the fatigue resistance. Mater. Res. Soc. Symp. Proc. B2.1.1, 634 (2001)

    Google Scholar 

  107. Malekjani, S., Hodgson, P.D., Cizek, P., Sabirov, I., Hilditch, T.B.: Cyclic deformation response of UFG 2024 Al alloy. Int. J. Fatigue 33, 700–709 (2011)

    Google Scholar 

  108. Huebner, P., Kiessling, R., Biermann, H., Vinogradov, A.: Fracture behaviour of ultrafine-grained materials under static and cyclic loading. Int. J. Mater. Res. 97, 1566–1570 (2006)

    Google Scholar 

  109. Huebner, P., Kiessling, R., Biermann, H., Hinkel, T., Jungnickel, W., Kawalla, R., Hoeppel, H.W., May, J.: Static and cyclic crack growth behavior of ultrafine-grained Al produced by different severe plastic deformation methods. Metall. Mater. Trans. A 38, 1926–1933 (2007)

    Google Scholar 

  110. Vinogradov, A., Nagasaki, S., Patlan, V., Kitagawa, K., Kawazoe, N.: Fatigue properties of 5056 Al-Mg alloy produced by equal-channel angular pressing. Nanostr. Mater. 11, 925–934 (1999)

    Google Scholar 

  111. Wu, L., Stoica, G.M., Liao, H.H., Agnew, S.R., Payzant, E.A., Wang, G., Fielden, D.E., Chen, L., Liaw, P.K.: Fatigue-property enhancement of magnesium alloy AZ31B through ECAP. Metall. Mater. Trans. A 38, 2283–2289 (2007)

    Google Scholar 

  112. Hanlon, T., Tabachnikova, E.D., Suresh, S.: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27, 1147–1158 (2005)

    Google Scholar 

  113. Kim, H., Lee, Y., Chung, C.: Fatigue properties of a fine-grained magnesium alloy produced by equal channel angular pressing. Scripta Mater. 52, 473–477 (2005)

    Google Scholar 

  114. Lapovok, R., Loader, C., Dalla Torre, F.H., Semiatin, S.L.: Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure. Mater. Sci. Eng., A 425, 36–46 (2006)

    Google Scholar 

  115. Malekjani, S., Hodgson, P.D., Stanford, N.E., Hilditch, T.B.: The role of shear banding on the fatigue ductility of ultrafine-grained aluminium. Scripta Mater. 68, 269–272 (2013)

    Google Scholar 

  116. Malekjani, S., Hodgson, P.D., Stanford, N.E., Hilditch, T.B.: Shear bands evolution in ultrafine-grained aluminium under cyclic loading. Scripta Mater. 68, 821–824 (2013)

    Google Scholar 

  117. Zum Gahr, K.H.: Microstructure and Wear of Materials. Elsevier, Amsterdam (1987)

    Google Scholar 

  118. Diomidis, N., Mischler, S., More, N.S., Roy, M.: Tribo-electrochemical characterization of metallic biomaterials for total joint replacement. Acta Biomater. 8, 852–859 (2012)

    Google Scholar 

  119. Wang, C.T., Gao, N., Wood, R.J.K., Langdon, T.G.: Wear behavior of an aluminum alloy processed by equal-channel angular pressing. J. Mater. Sci. 46, 123–130 (2011)

    Google Scholar 

  120. Jafari, M., Enayati, M.H., Abbasi, M.H., Karimzadeh, F.: Compressive and wear behavior of bulk nanostructured Al2024 alloy. Mater. Design. 31, 663–669 (2010)

    Google Scholar 

  121. Ortiz-Cuellar, E., Hernandez-Rodriguez, M.A.L., García-Sanchez, E.: Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformation. Wear 271, 1828–1832 (2011)

    Google Scholar 

  122. Purcek, G., Saray, O., Kucukomeroglu, T., Haouaoui, M., Karaman, I.: Effect of equal-channel angular extrusion on the mechanical and tribological properties of as-cast Zn–40Al–2Cu–2Si alloy. Mater. Sci. Eng., A 527, 3480 (2010)

    Google Scholar 

  123. Purcek, G., Karaman, I., Yapici, G.G., Al-Maharbi, M., Kuçukomeroglu, T., Saray, O.: Enhancement in mechanical behavior and wear resistance of severe plastically deformed two-phase Zn–Al alloys. Int. J. Mater. Res. 98, 332–338 (2007)

    Google Scholar 

  124. Edalati, K., Ashida, M., Horita, Z., Matsui, T., Kato, H.: Wear resistance and tribological features of pure aluminum and Al–Al2O3 composites consolidated by high-pressure torsion. Wear 310, 83–89 (2014)

    Google Scholar 

  125. Purcek, G., Saray, O., Kul, O., Karaman, I., Yapici, G.G., Haouaoui, M., Maier, H.J.: Mechanical and wear properties of ultrafine-grained pure Ti produced by multi-pass equal-channel angular extrusion. Mater. Sci. Eng., A 517, 97 (2009)

    Google Scholar 

  126. Ming, Q., Yong-zhen, Z., Jian-heng, Y., Jun, Z.: Microstructure and tribological characteristics of Ti–6Al–4V alloy against GCr15 under high speed and dry sliding. Mater. Sci. Eng., A 434, 71–75 (2006)

    Google Scholar 

  127. Sato, H., Elhadad, S., Sitdikov, O., Watanabe, Y.: Effects of processing routes on wear property of Al-Al3Ti alloys severely deformed by ECAP. Mater. Sci. Forum 971, 584–586 (2008)

    Google Scholar 

  128. Kim, Y.S., Ha, J.S., Kim, W.J.: Characteristics of severely deformed 6061 Al and AZ61 Mg alloys. Mater. Sci. Forum 597, 449–452 (2004)

    Google Scholar 

  129. Kucukomeroglu, T.: Effect of equal-channel angular extrusion on mechanical and wear properties of eutectic Al–12Si alloy. Mater. Design. 31, 782 (2010)

    Google Scholar 

  130. Kim, Y.S., Yu, H.S., Shin, D.H.: Low sliding-wear resistance of ultrafine-grained Al alloys and steel having undergone severe plastic deformation. Int. J. Mater. Res. 100, 871 (2009)

    Google Scholar 

  131. Kazemi Talachi, A., Eizadjou, M., Danesh Manesh, H., Janghorban, K.: Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process. Mater. Charact. 62, 12–21 (2011)

    Google Scholar 

  132. Abd El Aal, M.I., El Mahallawy, N., Shehata, F.A., Abd El Hameed, M., Yoon, E.Y., Kim, H.S.: Wear properties of ECAP-processed ultrafine grained Al–Cu alloys. Mater. Sci. Eng., A 527, 3726–3732 (2010)

    Google Scholar 

  133. Gao, L.L., Cheng, X.H.: Effect of ECAE on microstructure and tribological properties of Cu-10 %Al-4 %Fe Alloy. Tribol. Lett. 27, 221 (2007)

    Google Scholar 

  134. Gao, L.L., Cheng, X.H.: Microstructure and dry sliding wear behavior of Cu–10 %Al–4 %Fe alloy produced by equal channel angular extrusion. Wear 265, 986 (2008)

    Google Scholar 

  135. Gao, L.L., Cheng, X.H.: Microstructure, phase transformation and wear behavior of Cu–10 %Al–4 %Fe alloy processed by ECAE. Mater. Sci. Eng., A 473, 259 (2008)

    Google Scholar 

  136. Wang, Z.B., Tao, N.R., Li, S., Wang, W., Liu, G., Lu, J., Lu, K.: Effect of surface nanocrystallization on friction and wear properties in low carbon steel. Mater. Sci. Eng., A 352, 144 (2003)

    Google Scholar 

  137. Stolyarov, V.V., Shuster, L.S., Migranov, M.S., Valiev, R.Z., Zhu, Y.T.: Reduction of friction coefficient of ultrafine-grained CP titanium. Mater. Sci. Eng., A 371, 313 (2004)

    Google Scholar 

  138. La, P., Ma, J., Zhu, Y.T., Yang, J., Liu, W., Xue, Q., Valiev, R.Z.: Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Mater. 53, 5167 (2005)

    Google Scholar 

  139. Garbacz, H., Gradzka-Dahlke, M., Kurzydlowski, K.J.: The tribological properties of nano-titanium obtained by hydrostatic extrusion. Wear 263, 572 (2007)

    Google Scholar 

  140. Wang, C.T., Gao, N., Gee, M.G., Wood, R.J.K., Langdon, T.G.: Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear 280–281, 28–35 (2012)

    Google Scholar 

  141. Wang, C.T., Gao, N., Gee, M.G., Wood, R.J.K., Langdon, T.G.: Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J. Mech. Behav. Biomed. Mater. 17, 166–175 (2013)

    Google Scholar 

  142. Cheng, X., Li, Z., Xiang, G.: Dry sliding wear behavior of TiNi alloy processed by equal channel angular extrusion. Mater. Design 28, 2218 (2007)

    Google Scholar 

  143. Rossiter, P.L.: The Electrical Resisitivity of Metals and Alloys. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  144. Dugdale, J.S.: The Electrical Properties of Metals and Alloys. Arnold, London (1977)

    Google Scholar 

  145. Handbook Committee. In: ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, vol. 2. ASM International (1990)

    Google Scholar 

  146. Higuera-Cobos, O.F., Cabrera, J.M.: Mechanical, microstructural and electrical evolution of commercially pure copper processed by equal channel angular extrusion. Mater. Sci. Eng., A 571, 103–114 (2013)

    Google Scholar 

  147. Zhang, Y., Li, Y.S., Tao, N.R., Lu, K.: High strength and high electrical conductivity in bulk nanograined Cu embedded with nanoscale twins. Appl. Phys. Lett. 91, 211901 (2007)

    Google Scholar 

  148. Cheng, S., Ma, E., Wang, Y.M., Keckes, L.J., Youssef, K.M., Koch, C.C., Trociewitz, U.P., Han, K.: Tensile properties of in-situ consolidated nanocrystalline Cu. Acta Mater. 53, 1521 (2005)

    Google Scholar 

  149. Takata, N., Lee, S.H., Tsuji, N.: Ultrafine grained copper alloy sheets having both high strength and high electric conductivity. Mater. Lett. 63, 1757–1760 (2009)

    Google Scholar 

  150. Need, R.F., Alexander, D.J., Field, R.D., Livescu, V., Papin, P., Swenson, C.A., Mutnick, D.B.: The effects of equal channel angular extrusion on the mechanical and electrical properties of alumina dispersion-strengthened copper alloys. Mater. Sci. Eng., A 565, 450–458 (2013)

    Google Scholar 

  151. Vinogradov, A., Suzuki, Y., Ishida, T., Kitagawa, K., Kopylov, V.I.: Effect of chemical composition on structure and properties of ultrafine grained Cu–Cr–Zr alloys produced by equal-channel angular pressing. Mater. Trans. 45, 2187–2191 (2004)

    Google Scholar 

  152. Botcharova, E., Freudenberger, J., Schultz, L.: Mechanical and electrical properties of mechanically alloyed nanocrystalline CuNb alloys. Acta Mater. 54, 3333–3341 (2006)

    Google Scholar 

  153. Islamgaliev, R.K., Nesterov, K.M., Bourgon, J., Champion, Y., Valiev, R.Z.: Nanostructured Cu–Cr alloy with high strength and electrical conductivity. J. Appl. Phys. 115, 194301 (2014)

    Google Scholar 

  154. Murashkin, MYu., Sabirov, I., Kazykhanov, V.U., Bobruk, E.V., Dubravina, A.A., Valiev, R.Z.: Enhanced mechanical properties and electrical conductivity in ultrafine-grained Al alloy processed via ECAP-PC. J. Mater. Sci. 48, 4501 (2013)

    Google Scholar 

  155. Bobruk, E.V., Murashkin, MYu., Kazykhanov, V.U., Valiev, R.Z.: Aging behavior and properties of ultrafine-grained aluminum alloys of Al–Mg–Si system. Rev. Adv. Mater. Sci. 31, 14–34 (2012)

    Google Scholar 

  156. Valiev, R.Z., Murashkin, MYu., Sabirov, I.: A nanostructural design to produce high strength Al alloys with enhanced electrical conductivity. Scripta Mater. 76, 13–16 (2014)

    Google Scholar 

  157. Cahn, R.W., Haasen, P., Kramer, E.J. In: Materials Science and Technology, vol 8/9, p. 282. Wiley-VCH, New York (2005)

    Google Scholar 

  158. Kasap, S., Capper, P. (eds.): Springer Handbook of Electronic and Photonic Materials. Springer, WĂĽrzburg (2006)

    Google Scholar 

  159. Chen, X.H., Lu, L., Lu, K.: Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys. 102, 083708 (2007)

    Google Scholar 

  160. Sauvage, X., Wilde, G., Divinski, S.V., Horita, Z., Valiev, R.Z.: Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena. Mater. Sci. Eng., A 540, 1–12 (2012)

    Google Scholar 

  161. Gubicza, J., Schiller, I., Chinh, N.Q., Illy, J., Horita, Z., Langdon, T.G.: The effect of severe plastic deformation on precipitation in supersaturated Al–Zn–Mg alloys. Mater. Sci. Eng., A 460–461, 77–85 (2007)

    Google Scholar 

  162. Sha, G., Wang, Y.B., Liao, X.Z., Duan, Z.C., Ringer, S.P., Langdon, T.G.: Influence of equal-channel angular pressing on precipitation in an Al–Zn–Mg–Cu alloy. Acta Mater. 57, 3123–3132 (2009)

    Google Scholar 

  163. Garcia-Infanta, J.M., Swaminathan, S., Cepeda-Jimenez, C.M., McNelley, T.R., Ruano, O.A., Carreno, F.: Enhanced grain refinement due to deformation-induced precipitation during ambient-temperature severe plastic deformation of an Al–7 % Si alloy. J. Alloys Compd. 478, 139–143 (2009)

    Google Scholar 

  164. Roven, H.J., Liu, M., Werenskiold, J.C.: Dynamic precipitation during severe plastic deformation of an Al-Mg–Si aluminium alloy. Mater. Sci. Eng., A 483–484, 54–58 (2008)

    Google Scholar 

  165. Murayama, M., Hono, K., Saga, M., Kikuchi, M.: Atom probe studies on the early stages of precipitation in Al–Mg–Si alloys. Mater. Sci. Eng., A 250, 127 (1998)

    Google Scholar 

  166. Genevois, C., Fabregue, D., Deschamps, A., Poole, W.J.: On the coupling between precipitation and plastic deformation in relation with friction stir welding of AA2024 T3 aluminium alloy. Mater. Sci. Eng., A 441, 39 (2006)

    Google Scholar 

  167. Sauvage, X., Murashkin, MYu., Valiev, R.Z.: Atomic scale investigation of dynamic precipitation and grain boundary segregation in a 6061 aluminium alloy nanostructured by ECAP. Kovove Mater. 49(1), 11–15 (2011)

    Google Scholar 

  168. Kiessling, F., Nefzger, P., Nolasco, J.F., Kaintzyk, U.: Overhead Power Lines: Planning, Design, Construction. Springer, Berlin (2003)

    Google Scholar 

  169. Nishizaki, T., Lee, S., Horita, Z., Sasaki, T., Kobayashi, N.: Superconducting properties in bulk nanostructured niobium prepared by high-pressure torsion. Physica C 493, 132–135 (2013)

    Google Scholar 

  170. Beloshenko, V.A., Chishko, V.V.: Deformation-heat treatment of Nb-Ti superconductors using severe plastic deformation methods. Phys. Met. Metall. 114, 992–1002 (2013)

    Google Scholar 

  171. Edalati, K., Diao, T., Lee, S., Horita, Z., Nishizaki, T., Akune, T., Nojima, T., Sasaki, T.: High strength and superconductivity in nanostructured niobium-titanium alloy by high-pressure torsion and annealing: Significance of elemental decomposition and supersaturation. Acta Mater. 80, 149–158 (2014)

    Google Scholar 

  172. Herzer, G. In: Buschow, K.H.J. (ed.) Handbook of Magnetic Materials, vol. 10, p. 415. Elsevier Science B.V. (1997)

    Google Scholar 

  173. Mulyukov, K.Y., Khaphisov, S.B., Valiev, R.Z.: Grain boundaries and saturation magnetization in submicron grained nickel. Phys. Stat. Sol. (a) 133, 447 (1992)

    Google Scholar 

  174. Valiev, R.Z., Korznikova, G.F., Mulyukov, K.Y., Mishra, R.S., Mukherjee, A.K.: Saturation magnetization and curie temperature of nanocristalline nickel. Phil. Mag. B 75, 803 (1997)

    Google Scholar 

  175. Mulyukov, K.Y., Korznikova, G.F., Abdulov, R.Z., Valiev, R.Z.: Microstructure and magnetic properties of submicron grained cobalt after large plastic deformation and their variation during annealing. Phys. Stat. Sol. 125, 609 (1991)

    Google Scholar 

  176. Scheriau, S., Kriegisch, M., Kleber, S., Mehboob, N., Grossinger, R., Pippan, R.: Magnetic chatacteristics of HPT deformed soft-magnetic materials. J. Magn. Magn. Mater. 322, 2984–2988 (2010)

    Google Scholar 

  177. Mulyukov, K.Y., Korznikova, G.F., Sagdatkireyeva, M.B., Timofeyev, V.N., Valiev, R.Z.: The study of domain structure of submicron grained cobalt and its changes during heating. J. Magn. Magn. Mater. 110, 73 (1992)

    Google Scholar 

  178. Marin, P., Vazquez, M., Hernando, A.: Magnetic hardening during the amorphous to nanocrystalline transformation in FeSiBCuNb alloys: theoretical considerations. J. Magn. Magn. Mater. 196–197, 221–223 (1999)

    Google Scholar 

  179. Chbihi, A., Sauvage, X., Genevois, C., Blavette, D., Gunderov, D., Popov, A.G.: Optimization of the magnetic properties of FePd alloys by severe plastic deformation. Adv. Eng. Mater. 12, 708–713 (2010)

    Google Scholar 

  180. Stolyarov, V.V., Gunderov, D.V., Valiev, R.Z., Popov, A.G., Gaviko, V.S., Ermolenko, A.S.: Metastable states in R2Fe14B-based alloys processed by severe plastic deformation. J. Magn. Magn. Mater. 196–197, 166–168 (1999)

    Google Scholar 

  181. Stolyarov, V.V., Gunderov, D.V., Popov, A.G., Puzanova, T.Z., Raab, G.I., Yavari, A.R., Valiev, R.Z.: High coercive states in Pr-Fe-B-Cu alloy processed by equal channel angular pressing. J. Magn. Magn. Mater. 242–245, 1399–1401 (2002)

    Google Scholar 

  182. Stolyarov, V.V., Gunderov, D.V., Popov, A.G., Gavilko, V.S., Ermolenko, A.S.: Structure evolution and changes in magnetic properties of severe plastic deformed Nd(Pr)-Fe-B alloys during annealing. J. Alloys Compds. 281, 69–71 (1998)

    Google Scholar 

  183. Popov, A.G., Gunderov, D.V., Stolyarov, V.V.: Severe plastic deformation—a new method of formation of a high coercivity state in PrFeB-alloy. J. Magn. Magn. Mater. 33, 157–158 (1996)

    Google Scholar 

  184. Stolyarov, V.V., Popov, A.G., Gunderov, D.V., Gaviko, V.S., Korznikova, G.F., Ermolenko, A.S., Valiev, R.Z.: Effect of severe plastic deformation on the structure and magnetic properties of Pr–Fe–B–Cu alloys. Phys. Met. Metall. 83(2), 173 (1997)

    Google Scholar 

  185. Korznikova, G.F., Korznikov, A.V.: Gradient submicrocrystalline structure in Fe–Cr–Co system hard magnetic alloys. Mater. Sci. Eng., A 503, 99–102 (2009)

    Google Scholar 

  186. Straumal, B.B., Protasova, S.G., Mazilkin, A.A., Kogtenkova, O.A., Kurmanaeva, L., Baretzky, B., Schutz, G., Korneva, A., Zieba, P.: SPD induced changes in the Cu–Co alloys. Mater. Lett. 98, 217–221 (2013)

    Google Scholar 

  187. Suehiro, K., Nishimura, S., Horita, Z.: Change in magnetic property of Cu-6.5Co alloy through processing by ECAP. Mater. Trans. 49, 102–106 (2008)

    Google Scholar 

  188. Sagawa, M., Fujimura, S., Yamamoto, H., Matsuura, Y., Hiraga, K.: IEEE Trans. Magn. 20(5), 1584 (1984)

    Google Scholar 

  189. Shimoda, T., Akioka, K., Kobayashi, O., Yamagami, T., Ohki, T., Miayagawa, M., Yuri, T.: Hot working behavior of cast Pr–Fe-B magnets. IEEE Trans. Magn. 25(5), 4099 (1989)

    Google Scholar 

  190. Menéndez, E., Sort, J., Langlais, V., Zhilyaev, A., Muñoz, J.S., Suriñach, S., Nogués, J., Baró, M.D.: Cold compaction of metal–ceramic (ferromagnetic–antiferromagnetic) composites using high pressure torsion. J. Alloys Compds. 434–435, 505–508 (2007)

    Google Scholar 

  191. Kisker, H., Gessmann, T., Wurschum, R., Kronmuller, H., Schaefer, H.E.: Magnetic properties of high purity nanocrystalline nickel. Nanostr. Mater. 6, 925–928 (1995)

    Google Scholar 

  192. Rubel, M.: Reactor aspects of fusion: issues related to materials, radioactivity and radiation induced defects. Trans. Fusion Sci. Tech. 49, 465–473 (2006)

    Google Scholar 

  193. Garner, F.A. In: Comprehensive Nuclear Materials. Radiation Damage in Austenitic Steels, vol. 4, p. 33. Elsevier, Amsterdam (2012)

    Google Scholar 

  194. Thomson, M.W.: Defects and Radiation Damage in Metals. Cambridge University Press, New York (1969)

    Google Scholar 

  195. Parshin, A.M.: Structure, Strength and Radiation Damage of Corrosion-Resistant Steels and Alloys, p. 361. Amer. Nucl. Soc., La Grange Park (1996)

    Google Scholar 

  196. Abramivich, M.D., Votinov, S.N., Yoltukhvsky, A.G.: Radiation Materials Science in Atomic Power Stations. Energoatomizdat, Moscow (1984)

    Google Scholar 

  197. Alamo, A., Seran, J.L., Rabouille, O., Brachet, J.C., Mailard, A., Touron, H., Royer, J. In: Gelles, D.S., Nanstag, R.K., Kumar, A.S., Little, E.A. (eds.) Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270. American Society for Testing and Materials (1996)

    Google Scholar 

  198. Borodin, O.V., Bruk, V.V., Voevodin, V.N., Neklyudov, I.M., Shamardin, V.K., Neystroev, V.S. In: Gelles, D.S., Nanstag, R.K., Kumar, A.S., Little, E.A. (eds.) Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270. American Society for Testing and Materials (1996)

    Google Scholar 

  199. Schaeublin, R., Leguey, T., Spaetig, P., Baluk, N., Victoria, M.: Microstructure and mechanical properties of two ODS ferritic/martensitic steels. J. Nucl. Mater. 307, 778–782 (2002)

    Google Scholar 

  200. Brailsford, A.D., Bullough, R. In: Proc. Int. Conf. Phys. Met. React. Fuel Flem. Swelling of irradiated materials, p. 148. Berkeley Castle and Berkeley Nucl. Lab., London (1973)

    Google Scholar 

  201. Maksimkin, O.P., Shiganakov, S.B.: On the role of grain boundaries in work hardening and high-temperature embrittlement of irradiated metallic materials, p. 35. Preprint of Inst. Nuclear Phys. Kazakhstan Academy of Science, No.1-86, Alma-Ata (1986)

    Google Scholar 

  202. Chimi, Y., Iwase, A., Ishikawa, N., Kobiyama, M., Inami, T., Okuda, S.: Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J. Nucl. Mater. 297, 355 (2001)

    Google Scholar 

  203. Rose, M., Balogh, A.G., Hahn, H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Instr. Meth. Phys. Res. B 119, 127–128 (1997)

    Google Scholar 

  204. Samaras, M., Derlet, P.M., Van Swygenhoven, H., Victoria, M.: Computer simulation of displacement cascades in nanocrystalline Ni. Phys. Rev. Lett. 88, 125505 (2002)

    Google Scholar 

  205. Samaras, M., Derlet, P.M., Van Swygenhoven, H., Victoria, M.: Stacking fault tetrahedra formation in the neighbourhood of grain boundaries. Nucl. Instr. Meth. Phys. Res. B 202, 51 (2003)

    Google Scholar 

  206. Samaras, M., Derlet, P.M., Van Swygenhoven, H., Victoria, M.: Radiation damage near grain boundaries. Phil. Mag. 83, 3599 (2003)

    Google Scholar 

  207. Voegeli, W., Albe, K., Hahn, H.: Simulation of grain growth in nanocrystalline nickel induced by ion irradiation. Nucl. Instrum. Meth. B 202, 230 (2003)

    Google Scholar 

  208. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 105 (2000)

    Google Scholar 

  209. Lowe, T.C., Valiev, R.Z.: Producing nanoscale microstructures through severe plastic deformation. JOM 52, 27 (2000)

    Google Scholar 

  210. Valiev, R.Z.: Nanomaterial advantage. Nature 419, 887–889 (2002)

    Google Scholar 

  211. Korshunov, A.I., Vedernikova, I.I., Polyakov, L.V., Kravchenko, T.N., Smolyakov, A.A., Soloviev, V.P.: Effects of the number of ECAP passes and ECAP route on the heterogeneity in mechanical properties across the sample from titanium VT1-0. In: Proceedings of the 3rd International Conference on Nanomaterials by Severe Plastic Deformation, Fukuoka, Japan (2005)

    Google Scholar 

  212. Korshunov, A.I., Vedernikova, I.I., Polyakov, L.V., Kravchenko, T.N., Smolyakov, A.A., Soloviev, V.P.: Effects of the number of ECAP passes and ECAP route on the heterogeneity in mechanical properties across the sample from ultrafine copper. Rev. Adv. Mater. Sci. 10, 34–40 (2005)

    Google Scholar 

  213. Raab, G.J., Valiev, R.Z., Lowe, T.C., Zhu, Y.T.: Continuous processing of ultrafine grained Al by ECAP—conform. Mater. Sci. Eng., A 382, 30 (2004)

    Google Scholar 

  214. Lowe, T.C., Valiev, R.Z.: The use of severe plastic deformation techniques in grain refinement. JOM 56, 64–68 (2004)

    Google Scholar 

  215. Nita, N., Schaeublin, R., Victoria, M., Valiev, R.Z.: Effects of irradiation on the microstructure and mechanical properties of nanostructured materials. Phil. Mag. 85, 723 (2005)

    Google Scholar 

  216. Kilmametov, A.R., Gunderov, D.V., Valiev, R.Z., Balogh, A.G., Hahn, H.: Enhanced ion irradiation resistance of bulk nanocrystalline TiNi alloy. Scripta Mater. 59, 1027–1030 (2008)

    Google Scholar 

  217. Radiguet, B., Etienne, A., Pareige, P., Sauvage, X., Valiev, R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43, 7338–7343 (2008)

    Google Scholar 

  218. Revathy Rajan, P.B., Monnet, I., Hug, E., Etienne, A., Enikeev, N., Keller, C., Sauvage, X., Valiev, R., Radiguet, B.: Irradiation resistance of a nanostructured 316 austenitic stainless steel. IOP Conf. Ser.: Mater. Sci. Eng. 63, 012121 (2014)

    Google Scholar 

  219. Shamardin, V.K., Goncharenko, YuD, Bulanova, T.M., Karsakov, A.A., Alexandrov, I.V., Abramova, M.M., Karavaeva, M.V.: Effect of neutron irradiation on microstructure and properties of austenitic AISI 321 steel, subjected to equal-channel angular pressing. Rev. Adv. Mater. Sci. 31, 167–173 (2012)

    Google Scholar 

  220. Alsabbagh, A., Valiev, R.Z., Murty, K.L.: Influence of grain size on radiation effects in a low carbon steel. J. Nucl. Mater. 443, 302–310 (2013)

    Google Scholar 

  221. Alsabbagh, A., Sarkar, A., Miller, B., Burns, J., Squires, L., Porter, D., Cole, J.I., Murty, K.L.: Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel. Mater. Sci. Eng., A 615, 128–138 (2014)

    Google Scholar 

  222. Roy, I., Yang, H.W., Dinh, L., Lund, I., Earthman, J.C., Mohamed, F.A.: Possible origin of superior corrosion resistance for electrodeposited nanocrystalline Ni. Scripta Mater. 59, 305–308 (2008)

    Google Scholar 

  223. Ralston, K.D., Birbilis, N.: Effect of grain size on corrosion: a review. Corrosion 66, 075005 (2010)

    Google Scholar 

  224. Kim, H.S., Yoo, S.J., Ahn, J.W., Kim, D.H., Kim, W.J.: Ultrafine grained titanium sheets with high strength and high corrosion resistance. Mater. Sci. Eng., A 528, 8479–8485 (2011)

    Google Scholar 

  225. Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., Zhu, Y.T.: Corrosion resistance of ultra fine-grained Ti. Scripta Mater. 51, 225–229 (2004)

    Google Scholar 

  226. Hoseini, M., Shahryari, A., Omanovic, S., Szpunar, J.A.: Comparative effect of grain size and texture on the corrosion behaviour of commercially pure titanium processed by equal channel angular pressing. Corros. Sci. 51, 3064–3067 (2009)

    Google Scholar 

  227. Kim, H.S., Kim, W.J.: Annealing effects on the corrosion resistance of ultrafine-grained pure titanium. Corros. Sci. 89, 331–337 (2014)

    Google Scholar 

  228. Kim, H.S., Kim, W.J.: Enhanced corrosion resistance of ultrafine-grained AZ61 alloy containing very fine particles of Mg17Al12 phase. Corros. Sci. 75, 228–238 (2013)

    Google Scholar 

  229. Jinlong, L., Hongyun, L.: Comparison of corrosion properties of passive films formed on phase reversion induced nano/ultrafine-grained 321 stainless steel. Appl. Surf. Sci. 280, 124–131 (2013)

    Google Scholar 

  230. Zhang, L., Ma, A., Jiang, J., Yang, D., Song, D., Chen, J.: Sulphuric acid corrosion of ultrafine-grained mild steel processed by equal-channel angular pressing. Corros. Sci. 75, 434–442 (2013)

    Google Scholar 

  231. Hadzima, B., Janeček, M., Estrin, Y., Kim, H.S.: Microstructure and corrosion properties of ultrafine-grained interstitial free steel. Mater. Sci. Eng., A 462, 243–247 (2007)

    Google Scholar 

  232. Shahryari, A., Szpunar, J.A., Omanovic, S.: The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior. Corros. Sci. 51, 677–682 (2009)

    Google Scholar 

  233. Song, D., Ma, A.B., Jiang, J., Lin, P., Yang, D., Fan, J.: Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros. Sci. 52, 481–490 (2010)

    Google Scholar 

  234. Song, D., Ma, A., Jiang, J., Lin, P., Yang, D., Fan, J.: Corrosion behaviour of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing. Corros. Sci. 53, 362 (2011)

    Google Scholar 

  235. Wei, W., Wei, K.X., Du, Q.B.: Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding. Mater. Sci. Eng., A 454–455, 536–541 (2007)

    Google Scholar 

  236. Sharma, M.M., Ziemian, C.W.: Pitting and stress corrosion cracking susceptibility of nanostructrued Al–Mg alloys in natural and artificial environments. J. Mater. Eng. Perf. 17, 870–878 (2008)

    Google Scholar 

  237. Naeini, M.F., Shariat, M.H., Eizadjou, M.: On the chloride-induced pitting of ultra fine grains 5052 aluminum alloy produced by accumulative roll bonding process. J. Alloys Compds. 509, 4696–4700 (2011)

    Google Scholar 

  238. Hockauf, M., Meyer, L.W., Nickel, D., Alisch, G., Lampke, T., Wielage, B., Kruger, L.: Mechanical properties and corrosion behaviour of ultrafine-grained AA6082 produced by equal-channel angular pressing. J. Mater. Sci. 43, 7409–7417 (2008)

    Google Scholar 

  239. Sikora, E., Wei, X.J., Shaw, B.A.: Corrosion behavior of nanocrystalline Al–Mg based alloys. Corrosion 60, 387–397 (2004)

    Google Scholar 

  240. Gurao, N.P., Manivasagam, G., Govindaraj, P., Asokamani, R., Suwas, S.: Effect of texture and grain size on bio-corrosion response of ultrafine-grained titanium. Metall. Mater. Trans. A 44, 5602–5610 (2013)

    Google Scholar 

  241. Balakrishnan, A., Lee, B.C., Kim, T.N., Panigrahi, B.B.: Corrosion behaviour of ultra fine grained titanium in simulated body fluid for implant application. Trends Biomater. Artif. Organs 22, 54–60 (2008)

    Google Scholar 

  242. Gu, X.N., Li, N., Zheng, Y.F., Kang, F., Wang, J.T., Ruan, L.: In vitro study on equal channel angular pressing AZ31 magnesium alloy with and without back pressure. Mater. Sci. Eng., B 176, 1802–1806 (2011)

    Google Scholar 

  243. Ralston, K.D., Birbilis, N., Davies, C.H.J.: Revealing the relationship between grain size and corrosion rate of metals. Scripta Mater. 63, 1201–1204 (2010)

    Google Scholar 

  244. Ralston, K.D., Fabijanic, D., Birbilis, N.: Effect of grain size on corrosion of high purity aluminium. Electrochim. Acta 56, 1729–1736 (2011)

    Google Scholar 

  245. Birbilis, N., Ralston, K.D., Virtanen, S., Fraser, H.L., Davies, C.H.J.: Grain character influences on corrosion of ECAPed pure magnesium. Corros. Eng. Sci. Tech. 45, 224 (2010)

    Google Scholar 

  246. op’t Hoog, C., Birbilis, N., Estrin, Y.: Corrosion of pure Mg as a function of grain size and processing route. Adv. Eng. Mater. 10, 579 (2008)

    Google Scholar 

  247. Liu, K.T., Duh, J.G.: Grain size effects on the corrosion behaviour of Ni50.5Ti49.5 and Ni45.6Ti49.3Al5.1 films. J. Electroanal. Chem. 618, 45 (2008)

    Google Scholar 

  248. Ghosh, S.K., Dey, G.K., Dusane, R.O., Grover, A.K.: Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni–Cu alloys in 3.0 wt% NaCl solution. J. Alloys Compd. 426, 235 (2006)

    Google Scholar 

  249. Mahmoud, T.S.: Effect of friction stir processing on electrical conductivity and corrosion resistance of AA6063-T6 Al alloy. J. Mech. Eng. Sci. 222, 1117 (2008)

    Google Scholar 

  250. Lin, P., Palumbo, G., Erb, U., Aust, K.T.: Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scripta Metall. Mater. 33, 1387 (1995)

    Google Scholar 

  251. Mishnaevsky Jr, L., Levashov, E., Valiev, R.Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’yov, A.V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’e, S., Dluhos, L., Seefeldt, M., Smolin, A.: Nanostructured titanium-based materials for medical implants: modeling and development. Mater. Sci. Eng., R 81, 1–19 (2014)

    Google Scholar 

  252. Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29, 2941–2953 (2008)

    Google Scholar 

  253. Niinomi, M.: Biologically and mechanically biocompatible titanium alloys. Mater. Trans. 49, 2170–2178 (2008)

    Google Scholar 

  254. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.: Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog. Mater Sci. 54, 397–425 (2009)

    Google Scholar 

  255. Long, M., Rack, H.J.: Titanium alloys in total joint replacement—a materials science perspective. Biomaterials 19, 1621–1639 (1998)

    Google Scholar 

  256. Lowe, T.C., Valiev, R.Z.: Bulk nanostructured metals in biomedical applications. In: Tiwari, A., Nordin, A.N. (eds.) Advanced Biomaterials and Biodevices Frontiers, pp. 1–52. Wiley-Scrivener, New York (2014)

    Google Scholar 

  257. Bagherifard, S., Ghelichi, R., Khademhosseini, A., Guagliano, M.: Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation. ACS Appl. Mater. Interf. 11, 7963 (2014)

    Google Scholar 

  258. Webster, T.J., Ejiofor, J.U.: Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials 25, 4731–4739 (2004)

    Google Scholar 

  259. Ward, B.C., Webster, T.J.: Increased functions of osteoblasts on nanophase metals. Mater. Sci. Eng., C 27, 575–578 (2007)

    Google Scholar 

  260. Faghihi, S., Zhilyaev, A.P., Szpunar, J.A., Azari, F., Vali, H., Tabrizian, M.: Nanostructuring of a titanium material by high-pressure torsion improves pre-osteoblast attachment. Adv. Mater. 19, 1069–1073 (2007)

    Google Scholar 

  261. Faghihi, S., Azari, F., Zhilyaev, A.P., Szpunar, J.A., Vali, H., Tabrizian, M.: Cellular and molecular interactions between MC3T3-E1 pre-osteoblasts and nanostructured titanium produced by high-pressure torsion. Biomaterials 28, 3887–3985 (2007)

    Google Scholar 

  262. Valiev, R.Z., Semenova, I.P., Latysh, V.V., Rack, H., Lowe, T.C., Petruzelka, J., Dluhos, L., Hrusak, D., Sochova, J.: Nanostructured titanium for biomedical applications. Adv. Eng. Mater. 10(8), B15–B17 (2008)

    Google Scholar 

  263. Estrin, Y., Kasper, C., Diederichs, S., Lapovok, R.: Accelerated growth of preosteoblastic cells on ultrafine grained titanium. J. Biomed. Mater. Res. A. 90, 1239–1242 (2009)

    Google Scholar 

  264. Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Valiev, R.Z.: In vitro corrosion and cytotoxicity on microcrystalline, nanocrystalline, and amorphous NiTi alloy fabricated by high pressure torsion. Mater. Lett. 64, 983–986 (2010)

    Google Scholar 

  265. Zheng, C.Y., Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Valiev, R.Z.: Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Appl. Surf. Sci. 257, 5634–5640 (2011)

    Google Scholar 

  266. Zheng, C.Y., Nie, F.L., Zheng, Y.F., Cheng, Y., Wei, S.C., Valiev, R.Z.: Enhanced in vitro biocompatibility of ultrafine-grained titanium with hierarchical porous surface. Appl. Surf. Sci. 257, 9086–9093 (2011)

    Google Scholar 

  267. Estrin, Y., Ivanova, E.P., Michalska, A., Truong, V.K., Lapovok, R., Boyd, R.: Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 7, 900–906 (2011)

    Google Scholar 

  268. Venkatsurya, P.K.C., Girase, B., Misra, R.D.K., Pesacreta, T.C., Somani, M.C., Karjalainen, L.P.: The interplay between osteoblast functions and the degree of nanoscale roughness induced by grain boundary grooving of nanograined materials. Mater. Sci. Eng., C 32, 330–340 (2012)

    Google Scholar 

  269. Korotin, D.M., Bartkowski, S., Kurmaev, E.Z., Neumann, M., Yakushina, E.B., Valiev, R.Z., Cholakh, S.O.: Surface studies of coarse-grained and nanostructured titanium implants. J. Nanosci. Nanotech. 12, 8567–8572 (2012)

    Google Scholar 

  270. Misra, R.D.K., Nune, C., Pesacreta, T.C., Somani, M.C., Karjalainen, L.P.: Understanding the impact of grain structure in austenitic stainless steel from a nanograined regime to a coarse-grained regime on osteoblast functions using a novel metal deformation-annealing sequence. Acta Biomater. 9, 6245–6258 (2013)

    Google Scholar 

  271. Zhu, Y.T., Lowe, T.C., Valiev, R.Z., Stolyarov, V.V., Latysh, V.V., Raab, G.I.: Ultra-fine-grained titanium for medical implants. U.S. Patent No. US6399215 B1, 4 June 2002

    Google Scholar 

  272. Re, F., Zanetti, A., Sironi, M., Polentarutti, N., Lanfrancone, L., Dejana, E., Collotta, F.: Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J. Cell Biol. 127, 537–546 (1994)

    Google Scholar 

  273. Yamanaka, K., Mori, M., Chiba, A.: Origin of significant grain refinement in Co–Cr–Mo alloys without severe plastic deformation. Metall. Mater. Trans. A 43, 4875–4887 (2012)

    Google Scholar 

  274. Yamanaka, K., Mori, M., Chiba, A.: Enhanced mechanical properties of As-forged Co–Cr–Mo–N alloys with ultrafine-grained structures. Metallur. Mater. Trans. A. 43, 5243–5257 (2012)

    Google Scholar 

  275. Bauer, S., Schmuki, P., von der Mark, K., Park, J.: Engineering biocompatible implant surfaces Part I: materials and surfaces. Prog. Mater. Sci. 58, 261–326 (2013)

    Google Scholar 

  276. Zhou, J., Sun, C., Wu, X., Tao, N., Liu, G., Meng, X., Hong, Y.: Nanocrystalline formation during mechanical attrition of cobalt. Mater. Sci. Forum 503–504, 751–756 (2006)

    Google Scholar 

  277. Jiang, J., Ren, J., Shan, A., Liu, J., Song, H.: Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment. Mater. Sci. Eng., A 520, 80–89 (2009)

    Google Scholar 

  278. Ren, J., Li, D., Xu, P.: Surface nanocrystallines of Fe3Al produced by surface mechanical attrition. Adv. Mater. Res. 320, 325–328 (2011)

    Google Scholar 

  279. Li, W., Xu, W., Wang, X., Rong, Y.: Measurement of microstructural parameters of nanocrystalline Fe-30 wt%Ni alloy produced by surface mechanical attrition treatment. J. Alloys Compd. 474, 546–550 (2009)

    Google Scholar 

  280. Zhao, C., Zhao, C., Cao, P., Ji, W., Han, P., Zhang, J., Zhang, F., Jiang, Y., Zhang, X.: Hierarchical titanium surface textures affect osteoblastic functions. J. Biomed. Mater. Res. A. 99, 666–675 (2011)

    Google Scholar 

  281. Lin, C.C., Cheng, H.C., Huang, C.F., Lin, C.T., Lee, S.Y., Chen, C.S., Ou, K.L.: Enhancement of biocompatibility on bioactive Ti surface by low temperature plasma treatment. Jap. J. Appl. Phys. 44, 8590–8598 (2005)

    Google Scholar 

  282. Li, H., Zheng, Y., Qin, L.: Progress of biodegradable metals. Prog. Nat. Sci.: Mater. Int. 24, 414–422 (2014)

    Google Scholar 

  283. Zheng, Y.F., Gu, X.N., Witte, F.: Biodegradable metals. Mater. Sci. Eng. R. 77, 1–34 (2014)

    Google Scholar 

  284. Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., Manuel, M.V.: Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61, 31–34 (2009)

    Google Scholar 

  285. Waizy, H., Seitz, J.M., Reifenrath, J., Weizbauer, A., Bach, F.W., Meyer-Lindenberg, A., Denkena, B., Windhagen, H.: Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci. 48, 39–50 (2013)

    Google Scholar 

  286. Vojtich, D., Elova, H., Volenec, K.: Investigation of magnesium-based alloys for biomedical applications. Kovove Mater. 44, 206–219 (2006)

    Google Scholar 

  287. Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27, 1728–1734 (2006)

    Google Scholar 

  288. Mostaed, E., Hashempour, M., Fabrizi, A., Dellasega, D., Bestetti, M., Bonollo, F., Vedani, M.: Microstructure, texture evolution, mechanical properties and corrosion behavior of ECAP processed ZK60 magnesium alloy for biodegradable applications. J. Mech. Behav. Biomed. Mater. 37, 307–322 (2014)

    Google Scholar 

  289. Li, Z., Gu, X., Lou, S., Zheng, Y.: The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29, 1329 (2008)

    Google Scholar 

  290. Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Tao, H., Zhang, Y., He, Y., Jiang, Y., Bian, Y.: Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6, 626 (2010)

    Google Scholar 

  291. Bahl, S., Suwas, S., Chatterjee, K.: The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Adv. 4, 55677–55684 (2014)

    Google Scholar 

  292. Yang, J., Cui, F., Lee, I.S.: Surface modifications of magnesium alloys for biomedical applications. Ann. Biomed. Eng. 39, 1857–1871 (2011)

    Google Scholar 

  293. Wang, J., Tang, J., Zhang, P., Li, Y., Wang, J., Lai, Y., Qin, L.: Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J. Biomed. Mater. Res. B 100, 1691–1701 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Sabirov .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 I. Sabirov, N.A. Enikeev, M. Yu. Murashkin, and R. Z. Valiev

About this chapter

Cite this chapter

Sabirov, I., Enikeev, N.A., Murashkin, M.Y., Valiev, R.Z. (2015). Multifunctional Properties of Bulk Nanostructured Metallic Materials. In: Bulk Nanostructured Materials with Multifunctional Properties. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-19599-5_3

Download citation

Publish with us

Policies and ethics