Skip to main content

Mercury, Venus and Titan

  • Chapter
  • First Online:
Inner Solar System
  • 1290 Accesses

Abstract

The exploration of space has been at the forefront of scientific thought and discovery for the last half century. Beginning with the first Sputnik satellite in 1957 to the Curiosity landing and the other numerous ongoing missions of today, mankind is setting its sights away from Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Mercury

  • Anderson BJ, Slavin JA, Korth H, Boardsen SA, Zurbuchen TH, Raines JM, Gloeckler G, McNutt RL Jr, Solomon SC (2011) The dayside magnetospheric boundary layer at Mercury. Planet Space Sci 59:2037–2050

    Article  Google Scholar 

  • Anderson P, Macdonald M, Yen CW (2014) Novel orbits of Mercury, Venus, and Mars enabled using low thrust propulsion. Acta Astronaut 94:634–645

    Article  Google Scholar 

  • Arkani-Hamed J, Ghods A (2011) Could giant impacts cripple core dynamos of small terrestrial planets? Icarus 212:920–934

    Article  Google Scholar 

  • Baker DN, Odstrcil D, Anderson BJ, Arge CN, Benna M, Gloeckler G, Korth H, Mayer LR, Raines JM, Schriver D, Slavin JA, Solomon SC, Travnicek PM, Zurbuchen TH (2011) The space environments of Mercury at the times of the second and third MESSENGER flybys. Planet Space Sci 59:2066–2074

    Article  Google Scholar 

  • Bedini PD, Solomon SC, Finnegan EJ, Calloway AB, Ensor SL, McNutt RL Jr, Anderson BJ, Prockter LM (2012) MESSENGER at Mercury: a mid-term report. Acta Astronaut 81:369–379

    Article  Google Scholar 

  • BepiColombo (2014) European Space Agency. http://sci.esa.int/bepicolombo/. Accessed 25 July 2014

  • Blewett DT, Robinson MS, Denevi BW, Gillis-Davis JJ, Head JW, Solomon SC, Holsclaw GM, McClintock WE (2009) Multispectral images of Mercury from the first MESSENGER Flyby: analysis of global and regional color trends. Earth Planet Sci Lett 285:272–282

    Article  Google Scholar 

  • Cameron AGW, Fegley B Jr, Benz W, Slattery WL (1988) The strange density of Mercury: theoretical considerations. Mercury. In: Matthews MS, Chapman C, Vilas F (eds) The University of Arizona Press, Tucson

    Google Scholar 

  • Carli C, Sgavetti M (2011) Spectral characteristics of rocks: effects of composition and texture and implications for the interpretation of planet surface compositions. Icarus 211:1034–1048

    Article  Google Scholar 

  • Elser S, Meyer MR, Moore B (2012) On the origin of elemental abundances in the terrestrial planets. Icarus 221:859–874

    Article  Google Scholar 

  • Genova A, Iess L, Marabucci M (2013) Mercury’s gravity field from the first six months of MESSENGER data. Planet Space Sci 81:55–64

    Article  Google Scholar 

  • Grosser J, Glassmeier KH, Stadelmann A (2004) Induced magnetic field effects at planet Mercury. Planet Space Sci 52:1251–1260

    Article  Google Scholar 

  • Helbert J, Nestola F, Ferrari S, Maturilli A, Massironi M, Redhammer GJ, Capria MT, Carli C, Capaccioni F, Bruno M (2013) Olivine thermal emissivity under extreme temperature ranges: implication for Mercury surface. Earth Planet Sci Lett 371–372:252–257

    Article  Google Scholar 

  • Hiremath KH (2012) Magnetic field structure of Mercury. Planet Space Sci 63–64:8–14

    Article  Google Scholar 

  • HORIZONS Web-Interface. (2014) NASA JPL. http://ssd.jpl.nasa.gov/horizons.cgi. Accessed 3 Aug 2014

  • Izenberg NR, Klima RL, Murchie SL, Blewett DT, Holsclaw GM, McClintock WE, Malaret E, Mauceri C, Vilas F, Sprague AL, Helbert J, Domingue DL, Head JW III, Goudge TA, Solomon SC, Hibbitts CA, Dyar MD (2014) The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus 228:364–374

    Article  Google Scholar 

  • Koning A, Dumberry M (2013) Internal forcing of Mercury’s long period free librations. Icarus 223:40–47

    Article  Google Scholar 

  • Ksanfomality LV (2008) The surface of Mercury in the 210–350 W longitude range. Icarus 200:367–373

    Article  Google Scholar 

  • Leblanc F, Johnson RE (2003) Mercury’s sodium exosphere. Icarus 164:261–281

    Article  Google Scholar 

  • Lunar and Planetary Science (2014) NASA. http://nssdc.gsfc.nasa.gov/planetary/. Accessed 25 July 2014

  • Mariner 10 (2014) Space.com. http://www.space.com/18301-mariner-10.html. Accessed 25 July 2014

  • McNutt RL Jr, Solomon SC, Bedini PD, Finnegan EJ, Grant DG, The MESSENGER Team (2010) The MESSENGER mission: results from the first two Mercury flybys. Acta Astronaut 67:681–687

    Google Scholar 

  • McNutt RL Jr, Solomon SC, Bedini PD, Anderson BJ, Blewett DT, Evans LG, Gold RE, Krimigis SM, Murchie SL, Nittler LR, Phillips RJ, Prockter LM, Slavin JA, Zuber MT, Finnegan EJ, Grant DG, The MESSENGER Team (2014) MESSENGER at Mercury: early orbital operations. Acta Astronaut 93:509–515

    Google Scholar 

  • MESSENGER (2014) NASA/JHUAPL. http://messenger.jhuapl.edu/. Accessed 25 July 2014

  • Oberst J, Elgner S, Turner FS, Perry ME, Gaskell RW, Zuber MT, Robinson MS, Solomon SC (2011) Radius and limb topography of Mercury obtained from images acquired during the MESSENGER flybys. Planet Space Sci 59:1918–1924

    Article  Google Scholar 

  • Prockter LM (2005) Ice in the solar system. Johns Hopkins APL Technical Digest, vol 26, Num 2, pp 175–188

    Google Scholar 

  • Raines JM, Slavin JA, Zurbuchen TH, Gloeckler G, Anderson BJ, Baker DN, Korth H, Krimigis SM, McNutt RL Jr (2011) MESSENGER observations of the plasma environment near Mercury. Planet Space Sci 59:2004–2015

    Article  Google Scholar 

  • Rhodes EA, Evans LG, Nittler LR, Starr RD, Sprague AL, Lawrence DJ, McCoy TJ, Stockstill-Cahill KR, Goldsten JO, Peplowski PN, Hamara DK, Boynton WV, Solomon SC (2011) Analysis of MESSENGER gamma ray spectrometer data from the Mercury flybys. Planet Space Sci 59:1829–1841

    Article  Google Scholar 

  • Rivoldini A, Van Hoolst T (2013) The interior structure of Mercury constrained by the low degree gravity field and the rotation of Mercury. Earth Planet Sci Lett 377–378:62–72

    Article  Google Scholar 

  • Rothery DA, Marinangeli L, Anand M, Carpenter J, Christensen U, Crawford IA, DeSanctis MC, Epifani EM, Erard S, Frigeri A, Fraser G, Hauber E, Helbert J, Hiesinger H, Joy K, Langevin Y, Massironi M, Milillo A, Mitrofanov I, Muinonen K, Naranen J, Pauselli C, Potts P, Warell J, Wurz P (2010) Mercury’s surface and composition to be studied by BepiColombo. Planet Space Sci 58:21–39

    Article  Google Scholar 

  • Rothery DA, Thomas RJ, Kerber L (2014) Prolonged eruptive history of a compound volcano on mercury: volcanic and tectonic implications. Earth Planet Sci Lett 385:59–67

    Article  Google Scholar 

  • Ruiz J, López V, Dohm JM, Fernández C (2012) Structural control of scarps in the Rembrandt region of Mercury. Icarus 219:511–514

    Article  Google Scholar 

  • Schmidt CA, Wilson JK, Baumgardner J, Mendillo M (2010) Orbital effects on Mercury’s escaping sodium exosphere. Icarus 207:9–16

    Article  Google Scholar 

  • Smith DE, Zuber MT, Phillips RJ, Solomon SC, Neumann GA, Lemoine FG, Peale SJ, Margot J, Torrence MH, Talpe MJ, Head JW III, Hauck SA II, Johnson CL, Perry ME, Barnouin OS, McNutt RL Jr, Oberst J (2010) The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2. Icarus 209:88–100

    Article  Google Scholar 

  • Solar System Exploration: Mercury (2014) NASA. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mercury. Accessed 25 July 2014

  • Solomon SC (2003) Mercury: the enigmatic innermost planet. Earth Planet Sci Lett 216:441–455

    Article  Google Scholar 

  • Spohn T, Ball AJ, Seiferlin K, Conzelmann V, Hagermann A, Komlec NI, Kargl G (2001) A heat flow and physical properties package for the surface of Mercury. Planet Space Sci 49:1571–1577

    Article  Google Scholar 

  • Vasavada AR, Paige DA, Wood SE (1999) Near-surface temperatures on Mercury and the moon and the stability of polar ice deposits. Icarus 141:179–193

    Article  Google Scholar 

  • Wasson JT (1988) The building stones of the planets. In: Matthews MS, Chapman C, Vilas F (eds) Planetary Research. Mercury. The University of Arizona Press, Tucson, pp. 622–650

    Google Scholar 

  • Watters TR, Solomon SC, Robinson MS, Head JW, André SL, Hauck SA II, Murchie SL (2009) The tectonics of Mercury: the view after MESSENGER’s first flyby. Earth Planet Sci Lett 285:283–296

    Article  Google Scholar 

  • Xiao Z, Komatsu G (2013) Reprint of: impact craters with ejecta flows and central pits on Mercury. Sci Direct. doi:10.1016/j.pss.2013.07.001i

    Google Scholar 

  • Xiao Z, Strom RG, Chapman CR, Head JW, Klimczak C, Ostrach LR, Helbert J, D’Incecco P (2014) Comparisons of fresh complex impact craters on mercury and the moon: implications for controlling factors in impact excavation processes. Icarus 228:260–275

    Article  Google Scholar 

Venus

  • Basilevski AT, Shalygin EV, Titov DV, Markiewicz WJ, Scholten F, Roatsch TH, Kreslavsky MA, Moroz LV, Ignatiev NI, Fiethe B, Osterloh B, Michalik H (2012) Geologic interpretation of the near-infrared images of the surface taken by the Venus Monitoring Camera. Venus Expr Icarus 217:434–450

    Article  Google Scholar 

  • Cañon-Tapia E (2014) Insights into the dynamics of planetary interiors obtained through the study of global distribution of volcanoes II: tectonic implications from Venus. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2014.05.013

    Google Scholar 

  • Chamberlain S, Bailey J, Crisp D, Meadows V (2013) Ground-based near-infrared observations of water vapor in the Venus troposphere. Icarus 222(1):364–378

    Article  Google Scholar 

  • Cottini V, Ignatiev NI, Piccioni G, Drossart P, Grassi D, Markiewicz WJ (2012) Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217(2):561–569

    Article  Google Scholar 

  • Cotton DV, Bailey J, Crisp D, Meadows VS (2012) The distribution of carbon monoxide in the lower atmosphere of Venus. Icarus 217:570–584

    Article  Google Scholar 

  • Driscoll P, Bercovici D (2013) Divergent evolution of Earth and Venus: influence of degassing, tectonics, and magnetic fields. Icarus 226(2):1447–1464

    Article  Google Scholar 

  • Evans C, Peters R, Thompson M, Gadsby C, Partridge K, Mylan R, Sivan Y, Nation T, Follows D, Seeboo VH (2012) Atmosphere composition—D:\My Webs\index.htm. Licensed under Creative Commons Zero, Public Domain Dedication via Wikimedia Commons

    Google Scholar 

  • Gao P, Zhang X, Crisp D, Bardeen CG, Yung YL (2014) Bimodal distribution of sulfuric acid aerosols in the upper haze of Venus. Icarus 231:83–98

    Article  Google Scholar 

  • Haus R, Kappel D, Arnold G (2013) Self-consistent retrieval of temperature profiles and cloud structure in the northern hemisphere of Venus using VIRTIS/VEX and PMV/VENERA-15 radiation measurements. Planet Space Sci 89:77–101

    Article  Google Scholar 

  • Haus R, Kappel D, Arnold G (2014) Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232:232–248

    Article  Google Scholar 

  • Imamura T, Higuchi T, Maejima Y, Takagi M, Sugimoto N, Ikeda K, Ando H (2014) Inverse insolation dependence of Venus’ cloud-level convection. Icarus 228:181–188

    Article  Google Scholar 

  • Ivanov MA, Head JW (2013) The history of volcanism on Venus. Planet Space Sci 84:66–92

    Article  Google Scholar 

  • Khatuntsev IV, Patsaeva MV, Titov DV, Ignatiev NI, Turin AV, Limaye SS, Markiewicz WJ, Almeida M, Roatsch T, Moissl R (2013) Cloud level winds from the Venus express monitoring camera imaging. Icarus 226(1):140–158

    Article  Google Scholar 

  • Landis GA (2003) Colonization of Venus. In: AIP conference proceedings, vol 654, pp 1193–1198. doi:http://dx.doi.org/10.1063/1.1541418

  • Lundin R, Barabash S, Futaana Y, Sauvaud JA, Fedorov A, Perez-de-Tejada H (2011) Ion flow and momentum transfer in the Venus plasma environment. Icarus 215(2):751–758

    Article  Google Scholar 

  • Markiewicz WJ, Petrova E, Shalygina O, Almeida M, Titov DV, Limaye SS, Ignatiev N, Roatsch T, Matz KD (2014) Glory on Venus cloud tops and the unknown UV absorber. Icarus 234:200–203

    Article  Google Scholar 

  • Migliorini A, Grassi D, Montabone L, Lebonnois S, Drossart P, Piccioni G (2012) Investigation of air temperature on the nightside of Venus derived from VIRTIS-H on board Venus-Express. Icarus 217(2):640–647

    Article  Google Scholar 

  • Romeo I (2013) Monte Carlo models of the interaction between impact cratering and volcanic resurfacing on Venus: the effect of the Beta-Atla-Themis anomaly. Planet Space Sci 87:157–172

    Article  Google Scholar 

  • Russell CT, Luhmann JG, Strangeway RJ (2006) The solar wind interaction with Venus through the eyes of the Pioneer Venus Orbiter. Planet Space Sci 54(13–14):1482–1495

    Article  Google Scholar 

  • RUSSIAN FLOATING BASE FOR VENUS (2014) OrbitalSwap collective. Orbital swap, 9 Feb 2013. http://orbitalswap.com/?p=52. Accessed 25 July 2014

  • Sornig M, Sonnabend G, Stupar D, Kroetz P, Nakagawa H, Mueller-Wodarg I (2013) Venus’ upper atmospheric dynamical structure from ground-based observations shortly before and after Venus’ inferior conjunction 2009. Icarus 225(1):828–839

    Article  Google Scholar 

  • Squyres S, Soderblom LA, Calvin WM, Cruikshank D, Ehrenfreund P, Hubbard G S, Huntress WT, Kivelson MG, Lee G, Luu J, Mackwell S, McNutt RL, McSween HY, Paulikas GA, Simon-Miller A, Stevenson D, Young AT (2011) Planetary Decadal Survey 2013–2022: the future of planetary science. Solar System Exploration. NASA, 1st July 2014

    Google Scholar 

  • Stoddard PR, Jurdy DM (2012) Topographic comparisons of uplift features on Venus and Earth: implications for Venus tectonics. Icarus 217(2):524–533

    Article  Google Scholar 

  • VenusBalloonOutpost by Anynobody—Original work—This file was created with Blender. Licensed under Creative Commons Attribution-Share Alike 3.0 via Wikimedia_Commons http://commons.wikimedia.org/wiki/File:Venusballoonoutpost.png#mediaviewer/File:Venusballoonoutpost.png

  • Watson J, Castro G (2012) High-temperature electronics pose design and reliability challenges. Analog dialogue. Analog Devices, Inc., 4 Aug 2014

    Google Scholar 

  • Williams DR (2014) Chronology of Venus exploration. Venus exploration timeline. NASA, 29 May 2014. http://nssdc.gsfc.nasa.gov/planetary/chronology_venus.html. Accessed 15 July 2014

  • Zhang TL, Baumjohann W, Delva M, Auster HU, Balogh A, Russell CT, Barabash S, Balikhin M, Berghofer G, Biernat HK, Lammer H, Lichtenegger H, Magnes W, Nakamura R, Penz T, Schwingenschuh K, Vörös Z, Zambelli W, Fornacon KH, Glassmeier KH, Richter I, Carr C, Kudela K, Shi JK, Zhao H, Motschmann U, Lebreton JP (2006) Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet Space Sci 54(13–14):1336–1343

    Article  Google Scholar 

Titan

  • Atkinson KR, Zarnecki JC, Towner MC, Ringrose TJ, Hagermann A, Ball AJ, Leese MR, Kargl G, Paton MD, Lorenz RD, Green Simon F (2010) Penetrometry of granular and moist planetary surface materials: application to the Huygens landing site on Titan. Icarus 210(2):843–851

    Article  Google Scholar 

  • Filacchione G, Capaccioni F, Ciarniello M, Clark R, Cuzzi J, Nicholson PD, Cruikshank DP, Hedman MM, Buratti BJ, Lunine JI, Soderblom LA, Tosi F, Cerroni P, Brown RH, McCord TB, Jaumann R, Stephan K, Baines KH, Flamini E (2012) Saturn’s icy satellites and rings investigated by Cassini–VIMS: III—radial compositional variability. Icarus 220(2):1064–1096

    Article  Google Scholar 

  • Harria AM, Mäkinen T, Lehto A, Kahanpää H, Siili T (2006) Vertical pressure profile of Titan—observations of the PPI/HASI instrument. Planet Space Sci 54(12):1117–1123

    Article  Google Scholar 

  • Lorenza RD, Newman CE, Tokano T, Mitchell JL, Charnay B, Lebonnois S, Achterbergf RK (2012) Formulation of a wind specification for Titan late polar summer exploration. Planet Space Sci 70(1):73–83

    Article  Google Scholar 

  • Rodriguez S, Le Mouélic S, Rannou P, Sotin C, Brown RH, Barnes JW, Griffith CA, Burgalat J, Baines KH, Buratti BJ, Clark RN, Nicholson PD (2011) Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216(1):89–110

    Article  Google Scholar 

  • Schinder PJ, Flasar FM, Marouf EA, French RG, McGhee CA, Kliore AJ, Rappaport NJ, Barbinis E, Fleischman D, Anabtawi A (2012) The structure of Titan’s atmosphere from Cassini radio occultations: occultations from the Prime and Equinox missions. Icarus 221(2):1020–1031

    Article  Google Scholar 

  • Simon S, Motschmann U (2009). Titan’s induced magnetosphere under non-ideal upstream conditions: 3D multi-species hybrid simulations. Planet Space Sci 57(14–15):2001–2015

    Google Scholar 

  • Soderblom LA, Brown RH, Soderblom JM, Barnes Jason WK, Randolph L, Sotind C, Jaumann R, Mackinnon D (2009) The geology of Hotei Regio, Titan: correlation of Cassini VIMS and RADAR. Icarus 204(2):610–618

    Article  Google Scholar 

  • Tan SP, Kargel JS, Marion GM (2013) Titan’s atmosphere and surface liquid: new calculation using Statistical Associating Fluid Theory. Icarus 222(1):53–72

    Article  Google Scholar 

  • Tokano T (2014) Non-uniform global methane distribution in Titan’s troposphere evidenced by Cassini radio occultations. Icarus 231(1):1–12

    Article  Google Scholar 

  • Yelle R, Strobell D, Lellouch E, Gautier D (n.d.) From Lunar and Planetary Laboratory, University of Arizona. http://www.lpl.arizona.edu/~yelle/eprints/Yelle97b.pdf

Robotic Outpost and Human Habitation

  • Ruess F, Schaenzlin J, Benaroya H (2006) Structural design of a lunar habitat. ASCE J Aerosp Eng 19(3):133–157

    Article  Google Scholar 

  • Benaroya H, Bernold L (2008) Engineering of lunar bases. Acta Astronaut 62(4–5):277–299

    Article  Google Scholar 

Bibliography

  • Spohn T, Breuer D, Johnson TV (2014) Encyclopedia of the solar system, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank the editors of this volume for organizing and finalizing this book of chapters on the exciting planets Mercury and Venus. We appreciate being included. We are also grateful to the two reviewers who took their reviewing tasks seriously enough to read this long chapter and provide us with useful suggestions for clarification and completeness. Thank you both.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haym Benaroya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kamath, S., Rivera, J., Garcia, M., Benaroya, H. (2015). Mercury, Venus and Titan. In: Badescu, V., Zacny, K. (eds) Inner Solar System. Springer, Cham. https://doi.org/10.1007/978-3-319-19569-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19569-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19568-1

  • Online ISBN: 978-3-319-19569-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics