Skip to main content

Dual Energy CT in Gastrointestinal Tumors

  • Chapter
Dual Energy CT in Oncology
  • 1012 Accesses

Abstract

Foregoing technical advances in CT imaging, in particular the possibility of dual-energy CT (DECT) imaging, yielded to clear advantages in tumor detection, lesion characterization, and evaluation of response to therapy in oncological imaging. By using two different energies, DECT allows material decomposition on the basis of energy-dependent attenuation profiles of specific materials. Using DECT iodine can be extracted from an image to generate a set of simulated unenhanced images, thus eliminate the need for separate unenhanced datasets with consequently reduced radiation dose. However, studies using DECT in radiological imaging of the gastrointestinal tract are rare, as until recently, the main two focuses for abdominal oncological imaging using DECT were the detection and characterization of focal liver lesions and second oncological imaging of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graser A, Johnson TR, Chandarana H, Macari M (2009) Dual energy CT: preliminary observations and potential clinical applications in the abdomen. Eur Radiol 19:13–23

    Article  PubMed  Google Scholar 

  2. Simons D, Kachelriess M, Schlemmer HP (2014) Recent developments of dual-energy CT in oncology. Eur Radiol 24:930–939

    Article  PubMed  Google Scholar 

  3. De Cecco CN, Darnell A, Rengo M et al (2012) Dual-energy CT: oncologic applications. AJR Am J Roentgenol 199:S98–S105

    Article  PubMed  Google Scholar 

  4. Fuentes-Orrego JM, Pinho D, Kulkarni NM, Agrawal M, Ghoshhajra BB, Sahani DV (2014) New and evolving concepts in CT for abdominal vascular imaging. Radiographics 34:1363–1384

    Article  PubMed  Google Scholar 

  5. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34:589–612

    Article  PubMed  Google Scholar 

  6. Rosenbaum SJ, Stergar H, Antoch G, Veit P, Bockisch A, Kuhl H (2006) Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging 31:25–35

    Article  CAS  PubMed  Google Scholar 

  7. Levine MSHR (2000) Esophageal carcinoma. Saunders, Philadelphia

    Google Scholar 

  8. Wong R, Walker-Dilks C, Raifu A (2012) Evidence-based guideline recommendations on the use of positron emission tomography imaging in oesophageal cancer. Clin Oncol 24:86–104

    Article  CAS  Google Scholar 

  9. Allum WH, Blazeby JM, Griffin SM, Cunningham D, Jankowski JA, Wong R (2011) Guidelines for the management of oesophageal and gastric cancer. Gut 60:1449–1472

    Article  CAS  PubMed  Google Scholar 

  10. van Rossum PS, van Lier AL, Lips IM et al (2015) Imaging of oesophageal cancer with FDG-PET/CT and MRI. Clin Radiol 70(1):81–95

    Article  PubMed  Google Scholar 

  11. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    CAS  PubMed  Google Scholar 

  12. Hallinan JT, Venkatesh SK (2013) Gastric carcinoma: imaging diagnosis, staging and assessment of treatment response. Cancer Imaging 13:212–227

    Article  PubMed Central  PubMed  Google Scholar 

  13. Cuenod CA, Fournier L, Balvay D, Guinebretiere JM (2006) Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom Imaging 31:188–193

    Article  CAS  PubMed  Google Scholar 

  14. Lee TY, Purdie TG, Stewart E (2003) CT imaging of angiogenesis. Q J Nucl Med 47:171–187

    PubMed  Google Scholar 

  15. Yao J, Yang ZG, Chen TW, Li Y, Yang L (2010) Perfusion changes in gastric adenocarcinoma: evaluation with 64-section MDCT. Abdom Imaging 35:195–202

    Article  PubMed  Google Scholar 

  16. Miettinen M, Lasota J (2001) Gastrointestinal stromal tumors – definition, clinical, histological, immunohistochemical, and molecular genetic features and differential diagnosis. Virchows Arch 438:1–12

    Article  CAS  PubMed  Google Scholar 

  17. Ghanem N, Altehoefer C, Furtwangler A et al (2003) Computed tomography in gastrointestinal stromal tumors. Eur Radiol 13:1669–1678

    Article  PubMed  Google Scholar 

  18. Sureka B, Mittal MK, Mittal A, Sinha M, Thukral BB (2014) Imaging spectrum of gastrointestinal stromal tumor. Indian J Med Paediatr Oncol 35:143–148

    Article  PubMed Central  PubMed  Google Scholar 

  19. Apfaltrer P, Meyer M, Meier C et al (2012) Contrast-Enhanced Dual-Energy CT of Gastrointestinal Stromal Tumors: Is Iodine-Related Attenuation a Potential Indicator of Tumor Response? Invest Radiol 47(1)):65–70

    Article  CAS  PubMed  Google Scholar 

  20. Demetri GD, Benjamin RS, Blanke CD et al (2007) NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST) – update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw 5(Suppl 2):S1–S29, quiz S30

    PubMed  Google Scholar 

  21. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  CAS  PubMed  Google Scholar 

  22. Benjamin RS, Choi H, Macapinlac HA et al (2007) We should desist using RECIST, at least in GIST. J Clin Oncol 25:1760–1764

    Article  PubMed  Google Scholar 

  23. Meyer M, Hohenberger P, Apfaltrer P et al (2013) CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 82:923–928

    Article  CAS  PubMed  Google Scholar 

  24. Choi H (2008) Response evaluation of gastrointestinal stromal tumors. Oncologist 13(Suppl 2):4–7

    Article  PubMed  Google Scholar 

  25. Choi H, Charnsangavej C, de Castro Faria S et al (2004) CT evaluation of the response of gastrointestinal stromal tumors after imatinib mesylate treatment: a quantitative analysis correlated with FDG PET findings. AJR Am J Roentgenol 183:1619–1628

    Article  PubMed  Google Scholar 

  26. Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    Article  PubMed  Google Scholar 

  27. Hong X, Choi H, Loyer EM, Benjamin RS, Trent JC, Charnsangavej C (2006) Gastrointestinal stromal tumor: role of CT in diagnosis and in response evaluation and surveillance after treatment with imatinib. Radiographics 26:481–495

    Article  PubMed  Google Scholar 

  28. Reichardt P, Schneider U, Stroszczynski C, Pink D, Hohenberger P (2004) Molecular response of gastrointestinal stromal tumour after treatment with tyrosine kinase inhibitor imatinib mesylate. J Clin Pathol 57:215–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Tawfik AM, Kerl JM, Bauer RW et al (2012) Dual-energy CT of head and neck cancer: average weighting of low- and high-voltage acquisitions to improve lesion delineation and image quality-initial clinical experience. Invest Radiol 47:306–311

    Article  PubMed  Google Scholar 

  30. Sommer CM, Schwarzwaelder CB, Stiller W et al (2012) Iodine removal in intravenous dual-energy CT-cholangiography: is virtual non-enhanced imaging effective to replace true non-enhanced imaging? Eur J Radiol 81(4):692–699

    Article  PubMed  Google Scholar 

  31. Neville AM, Gupta RT, Miller CM, Merkle EM, Paulson EK, Boll DT (2011) Detection of renal lesion enhancement with dual-energy multidetector CT. Radiology 259(1):173–183

    Article  PubMed  Google Scholar 

  32. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  33. Anzidei M, Napoli A, Zini C, Kirchin MA, Catalano C, Passariello R (2011) Malignant tumours of the small intestine: a review of histopathology, multidetector CT and MRI aspects. Br J Radiol 84:677–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ouriel K, Adams JT (1984) Adenocarcinoma of the small intestine. Am J Surg 147:66–71

    Article  CAS  PubMed  Google Scholar 

  35. Soyer P, Boudiaf M, Fishman EK et al (2011) Imaging of malignant neoplasms of the mesenteric small bowel: new trends and perspectives. Crit Rev Oncol Hematol 80:10–30

    Article  PubMed  Google Scholar 

  36. Fidler JL, Guimaraes L, Einstein DM (2009) MR imaging of the small bowel. Radiographics 29:1811–1825

    Article  PubMed  Google Scholar 

  37. Verma D, Stroehlein JR (2006) Adenocarcinoma of the small bowel: a 60-yr perspective derived from M.D Anderson cancer center tumor registry. Am J Gastroenterol 101:1647–1654

    Article  PubMed  Google Scholar 

  38. Maglinte DD, Sandrasegaran K, Lappas JC, Chiorean M (2007) CT enteroclysis. Radiology 245:661–671

    Article  PubMed  Google Scholar 

  39. Romano S, De Lutio E, Rollandi GA, Romano L, Grassi R, Maglinte DD (2005) Multidetector computed tomography enteroclysis (MDCT-E) with neutral enteral and IV contrast enhancement in tumor detection. Eur Radiol 15:1178–1183

    Article  PubMed  Google Scholar 

  40. Goh V, Glynne-Jones R (2014) Perfusion CT imaging of colorectal cancer. Br J Radiol 87:20130811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Kopetz S, Chang GJ, Overman MJ et al (2009) Improved survival in metastatic colorectal cancer is associated with adoption of hepatic resection and improved chemotherapy. J Clin Oncol 27:3677–3683

    Article  PubMed Central  PubMed  Google Scholar 

  42. Tirumani SH, Kim KW, Nishino M et al (2014) Update on the role of imaging in management of metastatic colorectal cancer. Radiographics 34:1908–1928

    Article  PubMed  Google Scholar 

  43. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  CAS  PubMed  Google Scholar 

  44. Shen L, Toyota M, Kondo Y et al (2007) Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 104:18654–18659

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Fowler KJ, Linehan DC, Menias CO (2013) Colorectal liver metastases: state of the art imaging. Ann Surg Oncol 20:1185–1193

    Article  PubMed  Google Scholar 

  46. Chun YS, Vauthey JN, Boonsirikamchai P et al (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302:2338–2344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Kekelidze M, D'Errico L, Pansini M, Tyndall A, Hohmann J (2013) Colorectal cancer: current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J Gastroenterol 19:8502–8514

    Article  PubMed Central  PubMed  Google Scholar 

  48. Torigian DA, Huang SS, Houseni M, Alavi A (2007) Functional imaging of cancer with emphasis on molecular techniques. CA Cancer J Clin 57:206–224

    Article  PubMed  Google Scholar 

  49. Beets-Tan RG, Beets GL, Vliegen RF et al (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357:497–504

    Article  CAS  PubMed  Google Scholar 

  50. Niekel MC, Bipat S, Stoker J (2010) Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology 257:674–684

    Article  PubMed  Google Scholar 

  51. Chen CY, Hsu JS, Jaw TS et al (2014) Utility of the iodine overlay technique and virtual nonenhanced images for the preoperative T staging of colorectal cancer by dual-energy CT with tin filter technology. PLoS One 9, e113589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Boellaard TN, Henneman OD, Streekstra GJ et al (2013) The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping. Clin Radiol 68:799–806

    Article  CAS  PubMed  Google Scholar 

  53. Neri E, Vagli P, Picchietti S et al (2005) CT colonography: contrast enhancement of benign and malignant colorectal lesions versus fecal residuals. Abdom Imaging 30:694–697

    Article  CAS  PubMed  Google Scholar 

  54. Oto A, Gelebek V, Oguz BS et al (2003) CT attenuation of colorectal polypoid lesions: evaluation of contrast enhancement in CT colonography. Eur Radiol 13:1657–1663

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Apfaltrer MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Apfaltrer, P. (2015). Dual Energy CT in Gastrointestinal Tumors. In: De Cecco, C., Laghi, A., Schoepf, U., Meinel, F. (eds) Dual Energy CT in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-19563-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19563-6_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19562-9

  • Online ISBN: 978-3-319-19563-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics