Skip to main content

Coherent Diffractive Imaging with a Laboratory-Scale, Gas-Discharge Plasma Extreme Ultraviolet Light Source

  • Conference paper
  • First Online:
X-Ray Lasers 2014

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 169))

Abstract

Coherent diffractive imaging (CDI) and related techniques enable a new type of diffraction-limited high resolution microscopy and have been widely used in the extreme ultraviolet (EUV) and X-ray communities. In this experiment, we demonstrate CDI using a compact gas-discharge EUV light source with a wavelength of 17.3 nm (oxygen VI emission). Our image reconstruction method accounts for the partial spatial coherence of the radiation using a deconvolution technique. Our results are promising for future laboratory-scale CDI applications, including mask inspection for EUV lithography and EUV metrology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakdinawat, A., Attwood, D.: Nanoscale X-ray imaging. Nat. Photon. 4, 840–848 (2010)

    Article  ADS  Google Scholar 

  2. Miao, J., et al.: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature. 400, 342–344 (1999)

    Article  ADS  Google Scholar 

  3. Miao, J., et al.: Phase Retrieval from the Magnitude of the Fourier transform of Non-periodic Objects. JOSA A. 15, 1662–1669 (1998)

    Article  ADS  Google Scholar 

  4. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3, 27–29 (1978)

    Article  ADS  Google Scholar 

  5. Miao, J., et al.: Coherent X-ray diffraction imaging. IEEE J. Sel. Top. Quant. Electron. 18, 399–410 (2012)

    Article  ADS  Google Scholar 

  6. Spence, J.C.H.: Diffractive (lensless) imaging. In: Hawkes, P., Spence, J.C.H. (eds.) Science of Microscopy, pp. 1196–1227. Springer, New York (2007)

    Chapter  Google Scholar 

  7. Nugent, K.: Coherent methods in the X-ray sciences. Adv. Phys. 59, 1–99 (2010)

    Article  ADS  Google Scholar 

  8. Chapman, H.N., Nugent, K.A.: Coherent lensless X-ray imaging. Nat. Photon. 4, 833–839 (2010)

    Article  ADS  Google Scholar 

  9. Sandberg, R.L., et al.: High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. PNAS. 105, 24–27 (2008)

    Article  ADS  Google Scholar 

  10. Seaberg, M.D., et al.: Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Expr. 19, 22470–22479 (2011)

    Article  ADS  Google Scholar 

  11. Juschkin, L., et al.: Tabletop coherent diffraction imaging with a discharge plasma EUV source. Proc. SPIE. 8849, 88490Y (2013)

    Article  Google Scholar 

  12. Bergmann, K., et al.: Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma. Appl. Opt. 38, 5413–5417 (1999)

    Article  ADS  Google Scholar 

  13. Benk, M., Bergmann, K.: Brilliance scaling of discharge sources for extreme-ultraviolet and soft x-ray radiation for metrology applications. J. Micro/Nanolith. MEMS MOEMS. 11, 021106 (2012)

    Article  Google Scholar 

  14. Bergmann, K., et al.: Optimization of a gas discharge plasma source for extreme ultraviolet interference lithography at a wavelength of 11 nm. J. Appl. Phys. 106, 073309 (2009)

    Article  ADS  Google Scholar 

  15. Danylyuk, S., et al.: Diffraction-assisted extreme ultraviolet proximity lithography for fabrication of nanophotonic arrays. J. Vac. Sci. Technol. B. 31, 021602 (2013)

    Article  Google Scholar 

  16. Banyay, M., Juschkin, L.: Table-top reflectometer in the extreme ultraviolet for surface sensitive analysis. Appl. Phys. Lett. 94, 063507 (2009)

    Article  ADS  Google Scholar 

  17. Juschkin, L., et al.: EUV microscopy for defect inspection by dark-field mapping and zone plate zooming. J. Phys.: Conf. Ser. 186, 012030 (2009)

    ADS  Google Scholar 

  18. Juschkin, L.: Imaging with plasma based extreme ultraviolet sources. Proc. SPIE. 8678, 8678F (2012)

    ADS  Google Scholar 

  19. Benk, M., et al.: Compact soft x-ray microscope using a gas-discharge light source. Opt. Lett. 33, 2359 (2008)

    Article  ADS  Google Scholar 

  20. Wilson, D., et al.: Generation of circularly polarized radiation from a compact plasma-based extreme ultraviolet light source for tabletop X-ray magnetic circular dichroism studies. Rev. Sci. Inst. 85, 103110 (2014)

    Article  ADS  Google Scholar 

  21. Marchesini, S., et al.: X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B. 68, 140101 (2003)

    Article  ADS  Google Scholar 

  22. Crimmins, R., et al.: Improved bounds on object support from autocorrelation support and application to phase retrieval. JOSA A. 7, 3–13 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  23. Clark, J.N., Peele, A.G.: Simultaneous sample and spatial coherence characterisation using diffractive imaging. Appl. Phys. Lett. 99, 154103 (2011)

    Article  ADS  Google Scholar 

  24. Chapman, H.N., et al.: High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A. 23, 1179–1200 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bußmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bußmann, J. et al. (2016). Coherent Diffractive Imaging with a Laboratory-Scale, Gas-Discharge Plasma Extreme Ultraviolet Light Source. In: Rocca, J., Menoni, C., Marconi, M. (eds) X-Ray Lasers 2014. Springer Proceedings in Physics, vol 169. Springer, Cham. https://doi.org/10.1007/978-3-319-19521-6_36

Download citation

Publish with us

Policies and ethics