Skip to main content

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

Survival analysis has received a great deal of attention as a subfield of Bayesian nonparametrics over the last 50 years. In particular, the fitting of survival models that allow for sophisticated correlation structures has become common due to computational advances in the 1990s, in particular Markov chain Monte Carlo techniques. Very large, complex spatial datasets can now be analyzed accurately including the quantification of spatiotemporal trends and risk factors. This chapter reviews four nonparametric priors on baseline survival distributions in common use, followed by a catalogue of semiparametric and nonparametric models for survival data. Generalizations of these models allowing for spatial dependence are then discussed and broadly illustrated. Throughout, practical implementation through existing software is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aalen, O. O. (1980). A model for nonparametric regression analysis of counting processes. In Mathematical Statistics and Probability Theory, volume 2, pages 1–25. Springer-Verlag.

    Google Scholar 

  • Aalen, O. O. (1989). A linear regression model for the analysis of life times. Statistics in Medicine, 8(8), 907–925.

    Google Scholar 

  • Alzola, C. and Harrell, F. (2006). An Introduction to S and the Hmisc and Design Libraries. Online manuscript available at http://biostat.mc.vanderbilt.edu/wiki/pub/Main/RS/sintro.pdf.

  • Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. The Annals of Statistics, 10(4), 1100–1120.

    MathSciNet  MATH  Google Scholar 

  • Banerjee, S. and Carlin, B. P. (2003). Semiparametric spatio-temporal frailty modeling. Environmetrics, 14(5), 523–535.

    MATH  Google Scholar 

  • Banerjee, S. and Dey, D. K. (2005). Semiparametric proportional odds models for spatially correlated survival data. Lifetime Data Analysis, 11(2), 175–191.

    MathSciNet  MATH  Google Scholar 

  • Banerjee, S., Wall, M. M., and Carlin, B. P. (2003). Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics, 4(1), 123–142.

    MATH  Google Scholar 

  • Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008). Gaussian predictive process models for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(4), 825–848.

    MathSciNet  MATH  Google Scholar 

  • Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2015). Hierarchical Modeling and Analysis for Spatial Data, Second Edition. Chapman and Hall/CRC Press.

    Google Scholar 

  • Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42(11), 1–12.

    Google Scholar 

  • Belitz, C., Brezger, A., Klein, N., Kneib, T., Lang, S., and Umlauf, N. (2015). BayesX - Software for Bayesian inference in structured additive regression models. Version 3.0. Available from http://www.bayesx.org.

  • Berger, J. O. and Guglielmi, A. (2001). Bayesian and conditional frequentist testing of a parametric model versus nonparametric alternatives. Journal of the American Statistical Association, 96(453), 174–184.

    MathSciNet  MATH  Google Scholar 

  • Buckley, J. and James, I. (1979). Linear regression with censored data. Biometrika, 66(3), 429–436.

    MATH  Google Scholar 

  • Burridge, J. (1981). Empirical Bayes analysis of survival time data. Journal of the Royal Statistical Society. Series B (Methodological), 43(1), 65–75.

    MathSciNet  MATH  Google Scholar 

  • Cai, B. and Meyer, R. (2011). Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions. Computational Statistics & Data Analysis, 55(3), 1260–1272.

    MathSciNet  Google Scholar 

  • Cai, B., Lin, X., and Wang, L. (2011). Bayesian proportional hazards model for current status data with monotone splines. Computational Statistics & Data Analysis, 55(9), 2644–2651.

    MathSciNet  Google Scholar 

  • Carlin, B. P. and Hodges, J. S. (1999). Hierarchical proportional hazards regression models for highly stratified data. Biometrics, 55(4), 1162–1170.

    MATH  Google Scholar 

  • Chang, I.-S., Hsiung, C. A., Wu, Y.-J., and Yang, C.-C. (2005). Bayesian survival analysis using Bernstein polynomials. Scandinavian Journal of Statistics, 32(3), 447–466.

    MathSciNet  Google Scholar 

  • Chen, Y., Hanson, T., and Zhang, J. (2014). Accelerated hazards model based on parametric families generalized with Bernstein polynomials. Biometrics, 70(1), 192–201.

    MathSciNet  Google Scholar 

  • Chen, Y. Q. and Jewell, N. P. (2001). On a general class of semiparametric hazards regression models. Biometrika, 88(3), 687–702.

    MathSciNet  MATH  Google Scholar 

  • Chen, Y. Q. and Wang, M.-C. (2000). Analysis of accelerated hazards models. Journal of the American Statistical Association, 95(450), 608–618.

    MathSciNet  MATH  Google Scholar 

  • Cheng, S. C., Wei, L. J., and Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835–845.

    MathSciNet  MATH  Google Scholar 

  • Chernoukhov, A. (2013). Bayesian Spatial Additive Hazard Model. Electronic Theses and Dissertations. Paper 4965. http://scholar.uwindsor.ca/etd/4965

  • Christensen, R. and Johnson, W. (1988). Modeling accelerated failure time with a Dirichlet process. Biometrika, 75(4), 693–704.

    MathSciNet  MATH  Google Scholar 

  • Clayton, D. G. (1991). A Monte Carlo method for Bayesian inference in frailty models. Biometrics, 47(2), 467–485.

    MathSciNet  Google Scholar 

  • Cox, D. R. (1972). Regression models and life-tables (with discussion). Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187–220.

    MATH  Google Scholar 

  • Cox, D. R. (1975). Partial likelihood. Biometrika, 62(2), 269–276.

    MathSciNet  Google Scholar 

  • Dabrowska, D. M. and Doksum, K. A. (1988). Estimation and testing in a two-sample generalized odds-rate model. Journal of the American Statistical Association, 83(403), 744–749.

    MathSciNet  Google Scholar 

  • Darmofal, D. (2009). Bayesian spatial survival models for political event processes. American Journal of Political Science, 53(1), 241–257.

    Google Scholar 

  • Dasgupta, P., Cramb, S. M., Aitken, J. F., Turrell, G., and Baade, P. D. (2014). Comparing multilevel and Bayesian spatial random effects survival models to assess geographical inequalities in colorectal cancer survival: a case study. International Journal of Health Geographics, 13(1), 36.

    Google Scholar 

  • de Boor, C. (2001). A Practical Guide to Splines. Applied Mathematical Sciences, Vol. 27. Springer-Verlag: New York.

    Google Scholar 

  • De Iorio, M., Johnson, W. O., Müller, P., and Rosner, G. L. (2009). Bayesian nonparametric nonproportional hazards survival modeling. Biometrics, 65(3), 762–771.

    MathSciNet  MATH  Google Scholar 

  • Devarajan, K. and Ebrahimi, N. (2011). A semi-parametric generalization of the Cox proportional hazards regression model: Inference and applications. Computational Statistics & Data Analysis, 55(1), 667–676.

    MathSciNet  MATH  Google Scholar 

  • Diva, U., Dey, D. K., and Banerjee, S. (2008). Parametric models for spatially correlated survival data for individuals with multiple cancers. Statistics in Medicine, 27(12), 2127–2144.

    MathSciNet  Google Scholar 

  • Dukić, V. and Dignam, J. (2007). Bayesian hierarchical multiresolution hazard model for the study of time-dependent failure patterns in early stage breast cancer. Bayesian Analysis, 2, 591–610.

    MathSciNet  Google Scholar 

  • Dunson, D. B. and Herring, A. H. (2005). Bayesian model selection and averaging in additive and proportional hazards. Lifetime Data Analysis, 11, 213–232.

    MathSciNet  MATH  Google Scholar 

  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11(2), 89–102.

    MathSciNet  MATH  Google Scholar 

  • Escobar, M. D. and West, M. (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577–588.

    MathSciNet  MATH  Google Scholar 

  • Fahrmeir, L. and Kneib, T. (2011). Bayesian Smoothing and Regression for Longitudinal, Spatial and Event History Data. Oxford University Press.

    Google Scholar 

  • Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209–230.

    MathSciNet  MATH  Google Scholar 

  • Ferguson, T. S. (1974). Prior distributions on spaces of probability measures. The Annals of Statistics, 2, 615–629.

    MathSciNet  Google Scholar 

  • Finley, A. O., Sang, H., Banerjee, S., and Gelfand, A. E. (2009). Improving the performance of predictive process modeling for large datasets. Computational statistics & data analysis, 53(8), 2873–2884.

    MathSciNet  MATH  Google Scholar 

  • Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large spatial datasets. Journal of Computational and Graphical Statistics, 15(3), 502–523.

    MathSciNet  Google Scholar 

  • Geisser, S. and Eddy, W. F. (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153–160.

    MathSciNet  MATH  Google Scholar 

  • Gelfand, A. E. and Mallick, B. K. (1995). Bayesian analysis of proportional hazards models built from monotone functions. Biometrics, 51, 843–852.

    MATH  Google Scholar 

  • Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association, 87, 942–951.

    Google Scholar 

  • Griffin, J. (2010). Default priors for density estimation with mixture models. Bayesian Analysis, 5, 45–64.

    MathSciNet  Google Scholar 

  • Hanson, T., Kottas, A., and Branscum, A. (2008). Modelling stochastic order in the analysis of receiver operating characteristic data: Bayesian nonparametric approaches. Journal of the Royal Statistical Society: Series C, 57, 207–225.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T., Johnson, W., and Laud, P. (2009). Semiparametric inference for survival models with step process covariates. Canadian Journal of Statistics, 37(1), 60–79.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E. (2006a). Inference for mixtures of finite Polya tree models. Journal of the American Statistical Association, 101(476), 1548–1565.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E. (2006b). Modeling censored lifetime data using a mixture of gammas baseline. Bayesian Analysis, 1, 575–594.

    MathSciNet  Google Scholar 

  • Hanson, T. E. and Johnson, W. O. (2002). Modeling regression error with a mixture of Polya trees. Journal of the American Statistical Association, 97(460), 1020–1033.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E. and Yang, M. (2007). Bayesian semiparametric proportional odds models. Biometrics, 63(1), 88–95.

    MathSciNet  MATH  Google Scholar 

  • Hanson, T. E., Branscum, A., and Johnson, W. O. (2005). Bayesian nonparametric modeling and data analysis: An introduction. In D. Dey and C. Rao, editors, Bayesian Thinking: Modeling and Computation (Handbook of Statistics, volume 25), pages 245–278. Elsevier: Amsterdam.

    Google Scholar 

  • Hanson, T. E., Branscum, A., and Johnson, W. O. (2011). Predictive comparison of joint longitudinal–survival modeling: a case study illustrating competing approaches. Lifetime Data Analysis, 17, 3–28.

    MathSciNet  Google Scholar 

  • Hanson, T. E., Jara, A., Zhao, L., et al. (2012). A Bayesian semiparametric temporally-stratified proportional hazards model with spatial frailties. Bayesian Analysis, 7(1), 147–188.

    MathSciNet  Google Scholar 

  • Henderson, R., Shimakura, S., and Gorst, D. (2002). Modeling spatial variation in leukemia survival data. Journal of the American Statistical Association, 97(460), 965–972.

    MathSciNet  MATH  Google Scholar 

  • Hennerfeind, A., Brezger, A., and Fahrmeir, L. (2006). Geoadditive survival models. Journal of the American Statistical Association, 101(475), 1065–1075.

    MathSciNet  MATH  Google Scholar 

  • Hjort, N. L. (1990). Nonparametric Bayes estimators based on beta processes in models for life history data. The Annals of Statistics, 18, 1259–1294.

    MathSciNet  MATH  Google Scholar 

  • Hutton, J. L. and Monaghan, P. F. (2002). Choice of parametric accelerated life and proportional hazards models for survival data: Asymptotic results. Lifetime Data Analysis, 8, 375–393.

    MathSciNet  MATH  Google Scholar 

  • Ibrahim, J. G., Chen, M. H., and Sinha, D. (2001). Bayesian Survival Analysis. Springer-Verlag.

    Google Scholar 

  • Jara, A. and Hanson, T. E. (2011). A class of mixtures of dependent tailfree processes. Biometrika, 98, 553–566.

    MathSciNet  MATH  Google Scholar 

  • Jara, A., Lesaffre, E., De Iorio, M., and Quitana, F. (2010). Bayesian semiparametric inference for multivariate doubly-interval-censored data. The Annals of Applied Statistics, 4(4), 2126–2149.

    MathSciNet  MATH  Google Scholar 

  • Jara, A., Hanson, T. E., Quintana, F. A., Müller, P., and Rosner, G. L. (2011). DPpackage: Bayesian semi- and nonparametric modeling in R. Journal of Statistical Software, 40(5), 1–30.

    Google Scholar 

  • Johnson, W. O. and Christensen, R. (1989). Nonparametric Bayesian analysis of the accelerated failure time model. Statistics and Probability Letters, 8, 179–184.

    MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D. (1978). Nonparametric Bayesian analysis of survival time data. Journal of the Royal Statistical Society. Series B (Methodological), 40, 214–221.

    MathSciNet  Google Scholar 

  • Kaufman, C. G., Schervish, M. J., and Nychka, D. W. (2008). Covariance tapering for likelihood-based estimation in large spatial data sets. Journal of the American Statistical Association, 103(484), 1545–1555.

    MathSciNet  MATH  Google Scholar 

  • Kay, R. and Kinnersley, N. (2002). On the use of the accelerated failure time model as an alternative to the proportional hazards model in the treatment of time to event data: A case study in influenza. Drug Information Journal, 36, 571–579.

    Google Scholar 

  • Kneib, T. (2006). Mixed model based inference in structured additive regression. Ludwig-Maximilians-Universität München.

    Google Scholar 

  • Kneib, T. and Fahrmeir, L. (2007). A mixed model approach for geoadditive hazard regression. Scandinavian Journal of Statistics, 34(1), 207–228.

    MathSciNet  MATH  Google Scholar 

  • Koenker, R. (2008). Censored quantile regression redux. Journal of Statistical Software, 27(6), 1–25.

    Google Scholar 

  • Koenker, R. and Hallock, K. F. (2001). Quantile regression. Journal of Economic Perspectives, 15, 143–156.

    Google Scholar 

  • Komárek, A. and Lesaffre, E. (2007). Bayesian accelerated failure time model for correlated censored data with a normal mixture as an error distribution. Statistica Sinica, 17, 549–569.

    MathSciNet  MATH  Google Scholar 

  • Komárek, A. and Lesaffre, E. (2008). Bayesian accelerated failure time model with multivariate doubly-interval-censored data and flexible distributional assumptions. Journal of the American Statistical Association, 103, 523–533.

    MathSciNet  MATH  Google Scholar 

  • Kottas, A. and Gelfand, A. E. (2001). Bayesian semiparametric median regression modeling. Journal of the American Statistical Association, 95, 1458–1468.

    MathSciNet  Google Scholar 

  • Kuo, L. and Mallick, B. (1997). Bayesian semiparametric inference for the accelerated failure-time model. Canadian Journal of Statistics, 25, 457–472.

    MATH  Google Scholar 

  • Lang, S. and Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183–212.

    MathSciNet  Google Scholar 

  • Lavine, M. (1992). Some aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 20, 1222–1235.

    MathSciNet  MATH  Google Scholar 

  • Lavine, M. (1994). More aspects of Polya tree distributions for statistical modelling. The Annals of Statistics, 22, 1161–1176.

    MathSciNet  MATH  Google Scholar 

  • Li, J. (2010). Application of copulas as a new geostatistical tool. Dissertation.

    Google Scholar 

  • Li, J., Hong, Y., Thapa, R., and Burkhart, H. E. (2015a). Survival analysis of loblolly pine trees with spatially correlated random effects. Journal of the American Statistical Association, in press.

    Google Scholar 

  • Li, L., Hanson, T., and Zhang, J. (2015b). Spatial extended hazard model with application to prostate cancer survival. Biometrics, in press.

    Google Scholar 

  • Li, Y. and Lin, X. (2006). Semiparametric normal transformation models for spatially correlated survival data. Journal of the American Statistical Association, 101(474), 591–603.

    MathSciNet  MATH  Google Scholar 

  • Li, Y. and Ryan, L. (2002). Modeling spatial survival data using semiparametric frailty models. Biometrics, 58(2), 287–297.

    MathSciNet  MATH  Google Scholar 

  • Lin, X. and Wang, L. (2011). Bayesian proportional odds models for analyzing current status data: univariate, clustered, and multivariate. Communications in Statistics-Simulation and Computation, 40(8), 1171–1181.

    MathSciNet  MATH  Google Scholar 

  • Lin, X., Cai, B., Wang, L., and Zhang, Z. (2015). A Bayesian proportional hazards model for general interval-censored data. Lifetime Data Analysis, in press.

    Google Scholar 

  • Liu, Y. (2012). Bayesian analysis of spatial and survival models with applications of computation techniques. Ph.D. thesis, University of Missouri–Columbia.

    Google Scholar 

  • Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. Annals of Statistics, 12, 351–357.

    Google Scholar 

  • Martinussen, T. and Scheike, T. H. (2006). Dynamic Regression Models for Survival Data. Springer-Verlag.

    Google Scholar 

  • McKinley, T. J. (2007). Spatial survival analysis of infectious animal diseases. Ph.D. thesis, University of Exeter.

    Google Scholar 

  • Müller, P. and Quintana, F. A. (2004). Nonparametric Bayesian data analysis. Statistical Science, 19(1), 95–110.

    MathSciNet  MATH  Google Scholar 

  • Müller, P., Quintana, F., Jara, A., and Hanson, T. (2015). Bayesian Nonparametric Data Analysis. Springer-Verlag: New York.

    Google Scholar 

  • Murphy, S. A., Rossini, A. J., and van der Vaart, A. W. (1997). Maximum likelihood estimation in the proportional odds model. Journal of the American Statistical Association, 92, 968–976.

    MathSciNet  MATH  Google Scholar 

  • Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9, 249–265.

    MathSciNet  Google Scholar 

  • Nelsen, R. B. (2006). An Introduction to Copulas. Springer, 2nd edition.

    Google Scholar 

  • Nieto-Barajas, L. E. (2013). Lévy-driven processes in Bayesian nonparametric inference. Boletín de la Sociedad Matemática Mexicana, 19, 267–279.

    MathSciNet  MATH  Google Scholar 

  • Ojiambo, P. and Kang, E. (2013). Modeling spatial frailties in survival analysis of cucurbit downy mildew epidemics. Phytopathology, 103(3), 216–227.

    Google Scholar 

  • Orbe, J., Ferreira, E., and Núñez Antón, V. (2002). Comparing proportional hazards and accelerated failure time models for survival analysis. Statistics in Medicine, 21(22), 3493–3510.

    Google Scholar 

  • Pan, C., Cai, B., Wang, L., and Lin, X. (2014). Bayesian semi-parametric model for spatial interval-censored survival data. Computational Statistics & Data Analysis, 74, 198–209.

    MathSciNet  Google Scholar 

  • Petrone, S. (1999a). Bayesian density estimation using Bernstein polynomials. The Canadian Journal of Statistics, 27, 105–126.

    MathSciNet  MATH  Google Scholar 

  • Petrone, S. (1999b). Random Bernstein polynomials. Scandinavian Journal of Statistics, 26, 373–393.

    MathSciNet  MATH  Google Scholar 

  • Reid, N. (1994). A conversation with Sir David Cox. Statistical Science, 9, 439–455.

    MathSciNet  MATH  Google Scholar 

  • Ryan, T. and Woodall, W. (2005). The most-cited statistical papers. Journal of Applied Statistics, 32(5), 461–474.

    MathSciNet  MATH  Google Scholar 

  • Sang, H. and Huang, J. Z. (2012). A full scale approximation of covariance functions for large spatial data sets. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 74(1), 111–132.

    MathSciNet  Google Scholar 

  • Scharfstein, D. O., Tsiatis, A. A., and Gilbert, P. B. (1998). Efficient estimation in the generalized odds-rate class of regression models for right-censored time-to-event data. Lifetime Data Analysis, 4, 355–391.

    Google Scholar 

  • Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4, 639–650.

    MathSciNet  MATH  Google Scholar 

  • Sharef, E., Strawderman, R. L., Ruppert, D., Cowen, M., and Halasyamani, L. (2010). Bayesian adaptive B-spline estimation in proportional hazards frailty models. Electronic Journal of Statistics, 4, 606–642.

    MathSciNet  MATH  Google Scholar 

  • Sinha, D. and Dey, D. K. (1997). Semiparametric Bayesian analysis of survival data. Journal of the American Statistical Association, 92, 1195–1212.

    MathSciNet  MATH  Google Scholar 

  • Sinha, D., McHenry, M. B., Lipsitz, S. R., and Ghosh, M. (2009). Empirical Bayes estimation for additive hazards regression models. Biometrika, 96(3), 545–558.

    MathSciNet  MATH  Google Scholar 

  • Smith, M. S. (2013). Bayesian approaches to copula modelling. Bayesian Theory and Applications, pages 336–358.

    Google Scholar 

  • Susarla, V. and Van Ryzin, J. (1976). Nonparametric Bayesian estimation of survival curves from incomplete observations. Journal of the American Statistical Association, 71, 897–902.

    MathSciNet  MATH  Google Scholar 

  • Therneau, T. M. and Grambsch, P. M. (2000). Modeling Survival Data: Extending the Cox Model. Springer-Verlag Inc.

    Google Scholar 

  • Umlauf, N., Adler, D., Kneib, T., Lang, S., and Zeileis, A. (2015). Structured additive regression models: An R interface to BayesX. Journal of Statistical Software, 63(21), 1–46.

    Google Scholar 

  • Walker, S. G. and Mallick, B. K. (1997). Hierarchical generalized linear models and frailty models with Bayesian nonparametric mixing. Journal of the Royal Statistical Society, Series B: Methodological, 59, 845–860.

    MathSciNet  MATH  Google Scholar 

  • Walker, S. G. and Mallick, B. K. (1999). A Bayesian semiparametric accelerated failure time model. Biometrics, 55(2), 477–483.

    MathSciNet  Google Scholar 

  • Wang, L. and Dunson, D. B. (2011). Semiparametric Bayes’ proportional odds models for current status data with underreporting. Biometrics, 67(3), 1111–1118.

    MathSciNet  MATH  Google Scholar 

  • Wang, S., Zhang, J., and Lawson, A. B. (2012). A Bayesian normal mixture accelerated failure time spatial model and its application to prostate cancer. Statistical Methods in Medical Research.

    Google Scholar 

  • Yang, S. (1999). Censored median regression using weighted empirical survival and hazard functions. Journal of the American Statistical Association, 94, 137–145.

    MathSciNet  MATH  Google Scholar 

  • Yang, S. and Prentice, R. L. (1999). Semiparametric inference in the proportional odds regression model. Journal of the American Statistical Association, 94, 125–136.

    MathSciNet  MATH  Google Scholar 

  • Yin, G. and Ibrahim, J. G. (2005). A class of Bayesian shared gamma frailty models with multivariate failure time data. Biometrics, 61, 208–216.

    MathSciNet  Google Scholar 

  • Ying, Z., Jung, S. H., and Wei, L. J. (1995). Survival analysis with median regression models. Journal of the American Statistical Association, 90, 178–184.

    MathSciNet  MATH  Google Scholar 

  • Zellner, A. (1983). Applications of Bayesian analysis in econometrics. The Statistician, 32, 23–34.

    Google Scholar 

  • Zhang, J. and Lawson, A. B. (2011). Bayesian parametric accelerated failure time spatial model and its application to prostate cancer. Journal of Applied Statistics, 38(3), 591–603.

    MathSciNet  Google Scholar 

  • Zhang, J., Peng, Y., and Zhao, O. (2011). A new semiparametric estimation method for accelerated hazard model. Biometrics, 67, 1352–1360.

    MathSciNet  MATH  Google Scholar 

  • Zhang, M. and Davidian, M. (2008). “Smooth” semiparametric regression analysis for arbitrarily censored time-to-event data. Biometrics, 64(2), 567–576.

    MathSciNet  MATH  Google Scholar 

  • Zhao, L. and Hanson, T. E. (2011). Spatially dependent Polya tree modeling for survival data. Biometrics, 67(2), 391–403.

    MathSciNet  MATH  Google Scholar 

  • Zhao, L., Hanson, T. E., and Carlin, B. P. (2009). Mixtures of Polya trees for flexible spatial frailty survival modelling. Biometrika, 96(2), 263–276.

    MathSciNet  MATH  Google Scholar 

  • Zhou, H., Hanson, T., and Zhang, J. (2015a). Generalized accelerated failure time spatial frailty model for arbitrarily censored data. Lifetime Data Analysis, in revision.

    Google Scholar 

  • Zhou, H., Hanson, T., and Knapp, R. (2015b). Marginal Bayesian nonparametric model for time to disease arrival of threatened amphibian populations. Biometrics, in press.

    Google Scholar 

  • Zhou, H., Hanson, T., Jara, A., and Zhang, J. (2015c). Modeling county level breast cancer survival data using a covariate-adjusted frailty proportional hazards model. The Annals of Applied Statistics, 9(1): 43–68.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by federal grants 1R03CA165110 and 1R03CA176739-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Hanson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhou, H., Hanson, T. (2015). Bayesian Spatial Survival Models. In: Mitra, R., Müller, P. (eds) Nonparametric Bayesian Inference in Biostatistics. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19518-6_11

Download citation

Publish with us

Policies and ethics