Skip to main content

Abstract

Apoptosis is a crucial process in embryonic development, adult tissue homeostasis as well as in selective clearance of unwanted or infected cells. It is an energy dependent process generally initiated by cellular damage, stress or several endogenous and extracellular stimuli. During apoptosis, activation of specific proteases results in breakdown of cellular machinery which finally culminates into characteristic morphological and biochemical changes and hence death. For many years, it was believed that caspases were the only enzymes responsible for the proteolytic cascades in apoptosis. However, accumulating evidences indicate that cell death can occur in a programmed fashion in absence of caspase activation. For example, other proteases, such as cathepsins and HtrAs (high temperature requirement protease A), are also involved in the initiation and/or execution of the apoptosis. These proteases are capable of triggering mitochondrial dysfunction with subsequent caspase activation and cellular demise. Cathepsins, a group of proteases enclosed in the lysosomes, have a major role in apoptosis by triggering the death receptor as well as mitochondria-mediated apoptotic pathways. Apart from cathepsins, HtrAs also have a potential role in mediating apoptosis. HtrA family proteins are serine proteases that are involved in important physiological processes, including maintenance of mitochondrial homeostasis, apoptosis and cell signaling. They are involved in the development and progression of several diseases such as cancer, neurodegenerative disorders and arthritis. HtrA proteins are described as potential modulators of programmed cell death and chemotherapy-induced cytotoxicity. This chapter summarizes our current knowledge on the structural and functional aspects of these proteins, with an emphasis on their potential roles in apoptosis.

Funding: A part of work on HtrA family was supported by grants from the Department of Biotechnology (DBT) [BT/PR10552/BRB/10/606/2008] and Department of Science and Technology [SERB/F/108/2012-13], Govt. of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willstaetter R, Bamann E (1929) Ueber die Proteasen der Magenschleimhaut. Hoppe Seylers Z Physiol Chem 180:127–143

    Google Scholar 

  2. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta Protein Struct Mol Enzymol 1477:98–111

    CAS  Google Scholar 

  3. Rozman J, Stojan J, Kuhelj R, Turk V, Turk B (1999) Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett 459:358–362

    CAS  PubMed  Google Scholar 

  4. Jerala R, Zerovnik E, Kidric J, Turk V (1998) pH-induced conformational transitions of the propeptide of human cathepsin L: a role for a molten globule state in zymogen activation. J Biol Chem 273:11498–11504

    CAS  PubMed  Google Scholar 

  5. Turk B, Turk V, Turk D (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biochemistry 3–4:141–150

    Google Scholar 

  6. Turk V, Bode W (1991) The cystatins: protein inhibitors of cysteine proteinases. FEBS Lett 285:213–219

    CAS  PubMed  Google Scholar 

  7. Lenarcic B, Bevec T (1998) Thyropins–new structurally related proteinase inhibitors. Biol Chem 2:105–111

    Google Scholar 

  8. Turk B, Turk D, Salvesen GS (2002) Regulating cysteine protease activity: essential role of protease inhibitors as guardians and regulators. Curr Pharm Des 18:1623–1637

    Google Scholar 

  9. Turk D, Janjic V, Stern I, Podobnik M, Lamba D, Dahl SW, Lauritzen C, Pedersen J, Turk V, Turk B (2001) Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J 23:6570–6582

    Google Scholar 

  10. Gelb BD, Shi GP, Chapman HA, Desnick RJ (1996) Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science 5279:1236–1238

    Google Scholar 

  11. Vasiljeva O, Reinheckel T, Peters C, Turk D, Turk V, Turk B (2007) Emerging roles of cysteine cathepsins in disease and their potential as drug targets. Curr Pharm Des 4:387–403

    Google Scholar 

  12. Stoka V, Turk B, Schendel SL, Kim T-H, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Brömme D, Krajewski S, Reed JC, Yin X-M, Turk V, Salvesen GS (2001) Lysosomal protease pathways to apoptosis: clevage of bid, not pro-caspase, is the most likely route. J Biol Chem 276:3149–3157

    CAS  PubMed  Google Scholar 

  13. Boya P, Gonzalez-Polo R-A, Poncet D, Andreau K, Vieira HLA, Roumier T, Perfettini J-L, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22:3927–3936

    CAS  PubMed  Google Scholar 

  14. Barrett AJ, Rawlings ND, Jr JFW (eds) (1998) Handbook of proteolytic enzymes. Academic, London

    Google Scholar 

  15. Riese RJ, Chapman HA (2000) Cathepsins and compartmentalization in antigen presentation. Curr Opin Immunol 12:107–113

    CAS  PubMed  Google Scholar 

  16. Tolosa E, Li W, Yasuda Y, Wienhold W, Denzin LK, Lautwein A, Driessen C, Schnorrer P, Weber E, Stevanovic S, Kurek R, Melms A, Bromme D (2003) Cathepsin V is involved in the degradation of invariant chain in human thymus and is overexpressed in myasthenia gravis. J Clin Invest 112:517–526

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Shi G-P, Bryant RAR, Riese R, Verhelst S, Driessen C, Li Z, Bromme D, Ploegh HL, Chapman HA (2000) Role for cathepsin F in invariant chain processing and major histocompatibility complex class II peptide loading by macrophages. J Exp Med 191:1177–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Linnevers C, Smeekens SP, Brömme D (1997) Human cathepsin W, a putative cysteine protease predominantly expressed in CD8+ T-lymphocytes. FEBS Lett 405:253–259

    CAS  PubMed  Google Scholar 

  19. Velasco G, Ferrando AA, Puente XS, Sánchez LM, López-Otín C (1994) Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues. J Biol Chem 269:27136–27142

    CAS  PubMed  Google Scholar 

  20. Guncar G, Podobnik M, Pungercar J, Strukelj B, Turk V, Turk D (1998) Crystal structure of porcine cathepsin H determined at 2.1 A resolution: location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 1:51–61

    Google Scholar 

  21. Musil D, Zucic D, Turk D, Engh RA, Mayr I, Huber R, Popovic T, Turk V, Towatari T, Katunuma N (1991) The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. EMBO J 9:2321–2330

    Google Scholar 

  22. Gunčar G, Klemenčič I, Turk B, Turk V, Karaoglanovic-Carmona A, Juliano L, Turk D (2000) Crystal structure of cathepsin X: a flip–flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure 8:305–313

    PubMed  Google Scholar 

  23. Wiederanders B (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim Pol 3:691–713

    Google Scholar 

  24. Polgar L, Halasz P (1982) Current problems in mechanistic studies of serine and cysteine proteinases. Biochem J 1:1–10

    Google Scholar 

  25. McGrath ME (1999) The lysosomal cysteine proteases. Annu Rev Biophys Biomol Struct 28:181–204

    CAS  PubMed  Google Scholar 

  26. Turk D, Guncar G, Podobnik M, Turk B (1998) Revised definition of substrate binding sites of papain-like cysteine proteases. Biol Chem 2:137–147

    Google Scholar 

  27. Turk D, Guncar G (2003) Lysosomal cysteine proteases (cathepsins): promising drug targets. Acta Crystallogr Sect D 59:203–213

    Google Scholar 

  28. Barrett AJ (1994) [1] Classification of peptidases. In: Alan JB (ed) Methods in enzymology. Academic Press, New York, pp 1–15

    Google Scholar 

  29. Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta (BBA) – Proteins Proteomics 1824:68–88

    CAS  Google Scholar 

  30. Jenko S, Dolenc I, Gunčar G, Doberšek A, Podobnik M, Turk D (2003) Crystal structure of stefin A in complex with cathepsin H: N-terminal residues of inhibitors can adapt to the active sites of endo- and exopeptidases. J Mol Biol 326:875–885

    CAS  PubMed  Google Scholar 

  31. Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539

    CAS  PubMed  Google Scholar 

  32. Joshua-Tor L, Xu H, Johnston S, Rees D (1995) Crystal structure of a conserved protease that binds DNA: the bleomycin hydrolase, Gal6. Science 269:945–950

    CAS  PubMed  Google Scholar 

  33. Pereira PJB, Bergner A, Macedo-Ribeiro S, Huber R, Matschiner G, Fritz H, Sommerhoff CP, Bode W (1998) Human [beta]-tryptase is a ring-like tetramer with active sites facing a central pore. Nature 392:306–311

    CAS  PubMed  Google Scholar 

  34. Mølgaard A, Arnau J, Lauritzen C, Larsen S, Petersen G, Pedersen J (2007) The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2. Biochem J 401:645–650

    PubMed Central  PubMed  Google Scholar 

  35. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ (2000) Cathepsin B contributes to TNF-α–mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jäättelä M (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Liu N, Raja SM, Zazzeroni F, Metkar SS, Shah R, Zhang M, Wang Y, Brömme D, Russin WA, Lee JC, Peter ME, Froelich CJ, Franzoso G, Ashton-Rickardt PG (2003) NF-κB protects from the lysosomal pathway of cell death. EMBO J 22:5313–5322

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Turk B, Stoka V, Rozman-Pungercar J, Cirman T, Droga-Mazovec G, Oreic K, Turk V (2002) Apoptotic pathways: involvement of lysosomal proteases. Biol Chem 383:1035–44

    CAS  PubMed  Google Scholar 

  39. Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890

    CAS  PubMed  Google Scholar 

  40. Li W, Yuan X, Nordgren G, Dalen H, Dubowchik GM, Firestone RA, Brunk UT (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39

    CAS  PubMed  Google Scholar 

  41. Cirman T, Orešić K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279(5):3578–3587

    CAS  PubMed  Google Scholar 

  42. Reiners JJ Jr, Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 9:934–944

    CAS  PubMed  Google Scholar 

  43. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini J-L, Metivier D, Ojcius DM, Jäättelä M, Kroemer G (2003) Lysosomal membrane permeabilization induces cell death in a mitochondrion-dependent fashion. J Exp Med 197:1323–1334

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Katunuma N, Murata E, Le QT, Hayashi Y, Ohashi A (2004) New apoptosis cascade mediated by lysosomal enzyme and its protection by epigallo-catechin gallate. Adv Enzym Regul 44:1–10

    CAS  Google Scholar 

  45. Erdal H, Berndtsson M, Castro J, Brunk U, Shoshan MC, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci U S A 102:192–197

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Pham CTN, Ley TJ (1999) Dipeptidyl peptidase I is required for the processing and activation of granzymes A and B in vivo. Proc Natl Acad Sci 96:8627–8632

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Robker RL, Russell DL, Espey LL, Lydon JP, O'Malley BW, Richards JS (2000) Progesterone-regulated genes in the ovulation process: ADAMTS-1 and cathepsin L proteases. Proc Natl Acad Sci 97:4689–4694

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS (2006) Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem 281:12824–12832

    CAS  PubMed  Google Scholar 

  49. Cotrin SS, Puzer L, de Souza Judice WA, Juliano L, Carmona AK, Juliano MA (2004) Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides to define substrate specificity of carboxydipeptidases: assays with human cathepsin B. Anal Biochem 335:244–252

    CAS  PubMed  Google Scholar 

  50. Alves MFM, Puzer L, Cotrin SS, Juliano MA, Juliano L, Brömme D, Carmona AK (2003) S3 to S3′ subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Biochem J 373:981–986

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Oliveira M, Torquato RJS, Alves MFM, Juliano MA, Brömme D, Barros NMT, Carmona AK (2010) Improvement of cathepsin S detection using a designed FRET peptide based on putative natural substrates. Peptides 31:562–567

    CAS  PubMed  Google Scholar 

  52. Gocheva V, Zeng W, Ke D, Klimstra D, Reinheckel T, Peters C, Hanahan D, Joyce JA (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Mason RW (1989) Interaction of lysosomal cysteine proteinases with alpha 2-macroglobulin: conclusive evidence for the endopeptidase activities of cathepsins B and H. Arch Biochem Biophys 2:367–374

    Google Scholar 

  54. Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20:251–258

    CAS  PubMed  Google Scholar 

  55. Bevec T, Stoka V, Pungercic G, Dolenc I, Turk V (1996) Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. J Exp Med 183:1331–1338

    CAS  PubMed  Google Scholar 

  56. Schick C, Pemberton PA, Shi G-P, Kamachi Y, Çataltepe S, Bartuski AJ, Gornstein ER, Brömme D, Chapman HA, Silverman GA (1998) Cross-class inhibition of the cysteine proteinases cathepsins K, L, and S by the serpin squamous cell carcinoma antigen 1: a kinetic analysis†. Biochemistry 37:5258–5266

    CAS  PubMed  Google Scholar 

  57. Welss T, Sun J, Irving JA, Blum R, Smith AI, Whisstock JC, Pike RN, von Mikecz A, Ruzicka T, Bird PI, Abts HF (2003) Hurpin is a selective inhibitor of lysosomal cathepsin L and protects keratinocytes from ultraviolet-induced apoptosis†. Biochemistry 42:7381–7389

    CAS  PubMed  Google Scholar 

  58. Hwang S-R, Stoka V, Turk V, Hook V (2006) Resistance of cathepsin L compared to elastase to proteolysis when complexed with the serpin endopin 2C, and recovery of cathepsin L activity. Biochem Biophys Res Commun 340:1238–1243

    CAS  PubMed  Google Scholar 

  59. Hanada K, Tamai M, Yamagishi M, Ohmura S, Sawada J, Tanaka I (1978) Isolation and characterization of E-64, a new thiol protease inhibitor. Agric Biol Chem 42:523–528

    CAS  Google Scholar 

  60. Towatari T, Nikawa T, Murata M, Yokoo C, Tamai M, Hanada K, Katunuma N (1991) Novel epoxysuccinyl peptides A selective inhibitor of cathepsin B, in vivo. FEBS Lett 280:311–315

    CAS  PubMed  Google Scholar 

  61. Murata M, Miyashita S, Yokoo C, Tamai M, Hanada K, Hatayama K, Towatari T, Nikawa T, Katunuma N (1991) Novel epoxysuccinyl peptides selective inhibitors of cathepsin B, in vitro. FEBS Lett 280:307–310

    CAS  PubMed  Google Scholar 

  62. Novinec M, Korenč M, Caflisch A, Ranganathan R, Lenarčič B, Baici A (2014) A novel allosteric mechanism in the cysteine peptidase cathepsin K discovered by computational methods. Nat Commun 5

    Google Scholar 

  63. Yamamoto K (1999) Cathepsin E and cathepsin D. In: Turk V (ed) Proteases new perspectives. Birkhäuser, Basel, pp 59–71

    Google Scholar 

  64. Erickson AH, Conner GE, Blobel G (1981) Biosynthesis of a lysosomal enzyme. Partial structure of two transient and functionally distinct NH2-terminal sequences in cathepsin D. J Biol Chem 21:11224–11231

    Google Scholar 

  65. Conner GE, Richo G (1992) Isolation and characterization of a stable activation intermediate of the lysosomal aspartyl protease cathepsin D. Biochemistry 4:1142–1147

    Google Scholar 

  66. Gieselmann V, Hasilik A, von Figura K (1985) Processing of human cathepsin D in lysosomes in vitro. J Biol Chem 5:3215–3220

    Google Scholar 

  67. Koblinski JE, Dosescu J, Sameni M, Moin K, Clark K, Sloane BF (2002) Interaction of human breast fibroblasts with collagen I increases secretion of procathepsin B. J Biol Chem 277:32220–32227

    CAS  PubMed  Google Scholar 

  68. Laurent-Matha V, Maruani-Herrmann S, Prebois C, Beaujouin M, Glondu M, Noel A, Alvarez-Gonzalez ML, Blacher S, Coopman P, Baghdiguian S, Gilles C, Loncarek J, Freiss G, Vignon F, Liaudet-Coopman E (2005) Catalytically inactive human cathepsin D triggers fibroblast invasive growth. J Cell Biol 168:489–499

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Heylen N, Vincent LM, Devos V, Dubois V, Remacle C, Trouet A (2002) Fibroblasts capture cathepsin D secreted by breast cancer cells: possible role in the regulation of the invasive process. Int J Oncol 20:761–767

    CAS  PubMed  Google Scholar 

  70. Laurent-Matha V, Farnoud MR, Lucas A, Rougeot C, Garcia M, Rochefort H (1998) Endocytosis of pro-cathepsin D into breast cancer cells is mostly independent of mannose-6-phosphate receptors. J Cell Sci 111(Pt 17):2539–2549

    CAS  PubMed  Google Scholar 

  71. Vetvicka V, Vektvickova J, Fusek M (1994) Effect of human procathepsin D on proliferation of human cell lines. Cancer Lett 2:131–135

    Google Scholar 

  72. Zhou W, Scott SA, Shelton SB, Crutcher KA (2006) Cathepsin D-mediated proteolysis of apolipoprotein E: possible role in Alzheimer’s disease. Neuroscience 143:689–701

    CAS  PubMed  Google Scholar 

  73. Siintola E, Partanen S, Strömme P, Haapanen A, Haltia M, Maehlen J, Lehesjoki A-E, Tyynelä J (2006) Cathepsin D deficiency underlies congenital human neuronal ceroid-lipofuscinosis. Brain 129:1438–1445

    PubMed  Google Scholar 

  74. Sakai H, Saku T, Kato Y, Yamamoto K (1989) Quantitation and immunohistochemical localization of cathepsins E and D in rat tissues and blood cells. Biochim Biophys Acta Gen Subj 991:367–375

    CAS  Google Scholar 

  75. Kageyama T, Moriyama A, Kato T, Sano M, Yonezawa S (1996) Determination of cathepsins D and E in various tissues and cells of rat, monkey, and man by the assay with β-endorphin and substance P as substrates. Zool Sci 13:693–698

    CAS  Google Scholar 

  76. Finzi G, Cornaggia M, Capella C, Fiocca R, Bosi F, Solcia E, Samloff IM (1993) Cathepsin E in follicle associated epithelium of intestine and tonsils: localization to M cells and possible role in antigen processing. Histochemistry 3:201–211

    Google Scholar 

  77. Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K (1994) Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol 126:119–128

    CAS  PubMed  Google Scholar 

  78. Khan AR, Cherney MM, Tarasova NI, James MNG (1997) Structural characterization of activation/‘intermediate 2/’ on the pathway to human gastricsin. Nat Struct Mol Biol 4:1010–1015

    CAS  Google Scholar 

  79. Alina M, Marek G, Alicja K, Łukasz M (2008) Human cathepsin D. Folia Histochem Cytobiol 46:23–38

    Google Scholar 

  80. Roberts L, Adjei P, Gores G (1999) Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem Biophys 30:71–88

    CAS  PubMed  Google Scholar 

  81. Yu S-W, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297:259–263

    CAS  PubMed  Google Scholar 

  82. Deiss LP, Galinka H, Berissi H, Cohen O, Kimchi A (1996) Cathepsin D protease mediates programmed cell death induced by interferon-gamma, Fas/APO-1 and TNF-alpha. EMBO J 15:3861–3870

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Demoz M, Castino R, Cesaro P, Baccino FM, Bonelli G, Isidoro C (2002) Endosomal-lysosomal proteolysis mediates death signalling by TNFalpha, not by etoposide, in L929 fibrosarcoma cells: evidence for an active role of cathepsin D. Biol Chem 383:1237–1248

    CAS  PubMed  Google Scholar 

  84. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto-Morbach S, Wickel M, Schneider-Brachert W, Trauzold A, Hethke A, Schutze S (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563

    CAS  PubMed  Google Scholar 

  85. Ollinger K (2000) Inhibition of cathepsin D prevents free-radical-induced apoptosis in rat cardiomyocytes. Arch Biochem Biophys 373:346–351

    CAS  PubMed  Google Scholar 

  86. Kagedal K, Johansson U, Ollinger K (2001) The lysosomal protease cathepsin D mediates apoptosis induced by oxidative stress. FASEB J 15:1592–1594

    CAS  PubMed  Google Scholar 

  87. Takuma K, Kiriu M, Mori K, Lee E, Enomoto R, Baba A, Matsuda T (2003) Roles of cathepsins in reperfusion-induced apoptosis in cultured astrocytes. Neurochem Int 42:153–159

    CAS  PubMed  Google Scholar 

  88. Emert-Sedlak L, Shangary S, Rabinovitz A, Miranda MB, Delach SM, Johnson DE (2005) Involvement of cathepsin D in chemotherapy-induced cytochrome c release, caspase activation, and cell death. Mol Cancer Ther 4:733–742

    CAS  PubMed  Google Scholar 

  89. Kagedal K, Zhao M, Svensson I, Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 2:335–343

    Google Scholar 

  90. Johansson AC, Steen H, Ollinger K, Roberg K (2002) Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10:1253–1259

    Google Scholar 

  91. Conus S, Perozzo R, Reinheckel T, Peters C, Scapozza L, Yousefi S, Simon HU (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Zhao S, Aviles ER Jr, Fujikawa DG (2010) Nuclear translocation of mitochondrial cytochrome c, lysosomal cathepsins B and D, and three other death-promoting proteins within the first 60 minutes of generalized seizures. J Neurosci Res 88:1727–1737

    CAS  PubMed  Google Scholar 

  93. Grdovic N, Vidakovic M, Mihailovic M, Dinic S, Uskokovic A, Arambasic J, Poznanovic G (2010) Proteolytic events in cryonecrotic cell death: proteolytic activation of endonuclease P23. Cryobiology 60:271–280

    CAS  PubMed  Google Scholar 

  94. Kawakubo T, Okamoto K, Iwata J-I, Shin M, Okamoto Y, Yasukochi A, Nakayama KI, Kadowaki T, Tsukuba T, Yamamoto K (2007) Cathepsin E prevents tumor growth and metastasis by catalyzing the proteolytic release of soluble TRAIL from tumor cell surface. Cancer Research 67:10869–10878

    CAS  PubMed  Google Scholar 

  95. Yasukochi A, Kawakubo T, Nakamura S, Yamamoto K (2010) Cathepsin E enhances anticancer activity of doxorubicin on human prostate cancer cells showing resistance to TRAIL-mediated apoptosis. Biol Chem 8:947–958

    Google Scholar 

  96. Mohamadzadeh M, Mohamadzadeh H, Brammer M, Sestak K, Luftig RB (2004) Identification of proteases employed by dendritic cells in the processing of protein purified derivative (PPD). J Immune Based Ther Vaccines 1:8

    Google Scholar 

  97. Vetvicka V, Vagner J, Baudys M, Tang J, Foundling SI, Fusek M (1993) Human breast milk contains procathepsin D–detection by specific antibodies. Biochem Mol Biol Int 5:921–928

    Google Scholar 

  98. Saftig P, Hetman M, Schmahl W, Weber K, Heine L, Mossmann H, Koster A, Hess B, Evers M, von Figura K et al (1995) Mice deficient for the lysosomal proteinase cathepsin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J 15:3599–3608

    Google Scholar 

  99. Sealy L, Mota F, Rayment N, Tatnell P, Kay J, Chain B (1996) Regulation of cathepsin E expression during human B cell differentiation in vitro. Eur J Immunol 26:1838–1843

    CAS  PubMed  Google Scholar 

  100. Tsukuba T, Okamoto K, Yamamoto K (2012) Cathepsin E is critical for proper trafficking of cell surface proteins. J Oral Biosci 54:48–53

    CAS  Google Scholar 

  101. Arnold D, Keilholz W, Schild H, Dumrese T, Stevanović S, Rammensee H-G (1997) Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Eur J Biochem 249:171–179

    CAS  PubMed  Google Scholar 

  102. Yasuda Y, Kageyama T, Akamine A, Shibata M, Kominami E, Uchiyama Y, Yamamoto K (1999) Characterization of new fluorogenic substrates for the rapid and sensitive assay of cathepsin E and cathepsin D. J Biochem 125:1137–1143

    CAS  PubMed  Google Scholar 

  103. Blomgran R, Zheng L, Stendahl O (2007) Cathepsin-cleaved Bid promotes apoptosis in human neutrophils via oxidative stress-induced lysosomal membrane permeabilization. J Leukoc Biol 81:1213–1223

    CAS  PubMed  Google Scholar 

  104. Guagliardi LE, Koppelman B, Blum JS, Marks MS, Cresswell P, Brodsky FM (1990) Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature 343:133–139

    CAS  PubMed  Google Scholar 

  105. Diment S (1990) Different roles for thiol and aspartyl proteases in antigen presentation of ovalbumin. J Immunol 145:417–422

    CAS  PubMed  Google Scholar 

  106. Hewitt EW, Treumann A, Morrice N, Tatnell PJ, Kay J, Watts C (1997) Natural processing sites for human cathepsin E and cathepsin D in tetanus toxin: implications for T cell epitope generation. J Immunol 159:4693–4699

    CAS  PubMed  Google Scholar 

  107. Van Noort JM, Jacobs MJM (1994) Cathepsin D, but not cathepsin B, releases T cell stimulatory fragments from lysozyme that are functional in the context of multiple murine class II MHC molecules. Eur J Immunol 24:2175–2180

    PubMed  Google Scholar 

  108. Lenarčič B, Krašovec M, Ritonja A, Olafsson I, Turk V (1991) Inactivation of human cystatin C and kininogen by human cathepsin D. FEBS Lett 280:211–215

    PubMed  Google Scholar 

  109. Pimenta D, Chen V, Chao J, Juliano M, Juliano L (2000) α1-Antichymotrypsin and Kallistatin hydrolysis by human cathepsin D. J Protein Chem 19:411–418

    CAS  PubMed  Google Scholar 

  110. Ueno E, Sakai H, Kato Y, Yamamoto K (1989) Activation mechanism of erythrocyte cathepsin E. Evidence for the occurrence of the membrane-associated active enzyme. J Biochem 105:878–882

    CAS  PubMed  Google Scholar 

  111. Tarasova NI, Szecsi PB, Foltmann B (1986) An aspartic proteinase from human erythrocytes is immunochemically indistinguishable from a non-pepsin, electrophoretically slow moving proteinase from gastric mucosa. Biochim Biophys Acta 1:96–100

    Google Scholar 

  112. Hill J, Montgomery DS, Kay J (1993) Human cathepsin E produced in E. coli. FEBS Lett 326:101–104

    CAS  PubMed  Google Scholar 

  113. Keilová H, Tomášek V (1972) Effect of pepsin inhibitor from Ascaris lumbricoides on cathepsin D and E. Biochim Biophys Acta (BBA) Enzymology 284:461–464

    Google Scholar 

  114. Galjart NJ, Morreau H, Willemsen R, Gillemans N, Bonten EJ, d'Azzo A (1991) Human lysosomal protective protein has cathepsin A-like activity distinct from its protective function. J Biol Chem 266:14754–14762

    CAS  PubMed  Google Scholar 

  115. Itoh K, Takiyama N, Kase R, Kondoh K, Sano A, Oshima A, Sakuraba H, Suzuki Y (1993) Purification and characterization of human lysosomal protective protein expressed in stably transformed Chinese hamster ovary cells. J Biol Chem 268:1180–1186

    CAS  PubMed  Google Scholar 

  116. D’Azzo A, Hoogeveen A, Reuser AJ, Robinson D, Galjaard H (1982) Molecular defect in combined beta-galactosidase and neuraminidase deficiency in man. Proc Natl Acad Sci U S A 79:4535–4539

    PubMed Central  PubMed  Google Scholar 

  117. Hiraiwa M (1999) Cathepsin A/protective protein: an unusual lysosomal multifunctional protein. Cell Mol Life Sci CMLS 56:894–907

    CAS  PubMed  Google Scholar 

  118. Cuervo AM, Mann L, Bonten EJ, d’Azzo A, Dice JF (2003) Cathepsin A regulates chaperone-mediated autophagy through cleavage of the lysosomal receptor. EMBO J 1:47–59

    Google Scholar 

  119. Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275:6819–6823

    CAS  PubMed  Google Scholar 

  120. Selak MA, Smith JB (1990) Cathepsin G binding to human platelets. Evidence for a specific receptor. Biochem J 1:55–62

    Google Scholar 

  121. Sun R, Iribarren P, Zhang N, Zhou Y, Gong W, Cho EH, Lockett S, Chertov O, Bednar F, Rogers TJ, Oppenheim JJ, Wang JM (2004) Identification of neutrophil granule protein cathepsin G as a novel chemotactic agonist for the G protein-coupled formyl peptide receptor. J Immunol 173:428–436

    CAS  PubMed  Google Scholar 

  122. Uehara A, Muramoto K, Takada H, Sugawara S (2003) Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170:5690–5696

    CAS  PubMed  Google Scholar 

  123. Glusa E, Adam C (2001) Endothelium-dependent relaxation induced by cathepsin G in porcine pulmonary arteries. Br J Pharmacol 133:422–428

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Sabri A, Alcott SG, Elouardighi H, Pak E, Derian C, Andrade-Gordon P, Kinnally K, Steinberg SF (2003) Neutrophil cathepsin G promotes detachment-induced cardiomyocyte apoptosis via a protease-activated receptor-independent mechanism. J Biol Chem 278:23944–23954

    CAS  PubMed  Google Scholar 

  125. Iacoviello L, Kolpakov V, Salvatore L, Amore C, Pintucci G, de Gaetano G, Donati MB (1995) Human endothelial cell damage by neutrophil-derived cathepsin G: role of cytoskeleton rearrangement and matrix-bound plasminogen activator inhibitor-1. Arterioscler Thromb Vasc Biol 15:2037–2046

    CAS  PubMed  Google Scholar 

  126. Yui S, Tomita K, Kudo T, Ando S, Yamazaki M (2005) Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Sci 96:560–570

    CAS  PubMed  Google Scholar 

  127. Lipinska B, Fayet O, Baird L, Georgopoulos C (1989) Identification, characterization, and mapping of the Escherichia coli htrA gene, whose product is essential for bacterial growth only at elevated temperatures. J Bacteriol 171:1574–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Spiess C, Beil A, Ehrmann M (1999) A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97:339–347

    CAS  PubMed  Google Scholar 

  129. Zurawa-Janicka D, Skorko-Glonek J, Lipinska B (2010) HtrA proteins as targets in therapy of cancer and other diseases. Expert Opin Ther Targets 14:665–679

    CAS  PubMed  Google Scholar 

  130. He X, Khurana A, Maguire JL, Chien J, Shridhar V (2012) HtrA1 sensitizes ovarian cancer cells to cisplatin-induced cytotoxicity by targeting XIAP for degradation. Int J Cancer 5:10295–10235

    Google Scholar 

  131. Chien J, Aletti G, Baldi A, Catalano V, Muretto P, Keeney GL, Kalli KR, Staub J, Ehrmann M, Cliby WA, Lee YK, Bible KC, Hartmann LC, Kaufmann SH, Shridhar V (2006) Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest 7:1994–2004

    Google Scholar 

  132. Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162

    CAS  PubMed  Google Scholar 

  133. Chien J, Campioni M, Shridhar V, Baldi A (2009) HtrA serine proteases as potential therapeutic targets in cancer. Curr Cancer Drug Targets 9:451–468

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre J, Zervos A (2000) Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney Ischemia. J Biol Chem 275:2581–2588

    CAS  PubMed  Google Scholar 

  135. Akhurst RJ, Derynck R (2001) TGF-beta signaling in cancer–a double-edged sword. Trends Cell Biol 11:s44–s51

    CAS  PubMed  Google Scholar 

  136. Gray C, Ward R, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom K, West A, Savopoulos J, Hassan N, Clinkenbeard H, Hanning C, Amegadzie B, Davis J, Dingwall C, Livi G, Creasy C (2000) Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 267:5699–5710

    CAS  PubMed  Google Scholar 

  137. Oka C, Tsujimoto R, Kajikawa M, Koshiba-Takeuchi K, Ina J, Yano M, Tsuchiya A, Ueta Y, Soma A, Kanda H, Matsumoto M, Kawaichi M (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 5:1041–1053

    Google Scholar 

  138. Clausen T, Southan C, Ehrmann M (2002) The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell 10:443–455

    CAS  PubMed  Google Scholar 

  139. Zumbrunn J, Trueb B (1996) Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett 398:187–192

    CAS  PubMed  Google Scholar 

  140. Marabese M, Mazzoletti M, Vikhanskaya F, Broggini M (2008) HtrA2 enhances the apoptotic functions of p73 on bax. Cell Death Differ 5:849–858

    Google Scholar 

  141. Eigenbrot C, Ultsch M, Lipari MT, Moran P, Lin SJ, Ganesan R, Quan C, Tom J, Sandoval W, van Lookeren Campagne M, Kirchhofer D (2012) Structural and functional analysis of HtrA1 and its subdomains. Structure 6:1040–1050

    Google Scholar 

  142. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, Kawata H, Koyama A, Arima K, Takahashi T, Ikeda M, Shiota H, Tamura M, Shimoe Y, Hirayama M, Arisato T, Yanagawa S, Tanaka A, Nakano I, Ikeda S-I, Yoshida Y, Yamamoto T, Ikeuchi T, Kuwano R, Nishizawa M, Tsuji S, Onodera O (2009) Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 17:1729–1739

    Google Scholar 

  143. Chien J, Staub J, Hu S, Erickson-Johnson M, Couch F, Smith D, Crowl R, Kaufmann S, Shridhar V (2004) A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23:1636–1644

    CAS  PubMed  Google Scholar 

  144. Truebestein L, Tennstaedt A, Mönig T, Krojer T, Canellas F, Kaiser M, Clausen T, Ehrmann M (2011) Substrate-induced remodeling of the active site regulates human HTRA1 activity. Nat Struct Mol Biol 18:386–388

    CAS  PubMed  Google Scholar 

  145. Xia J, Wang F, Wang L, Fan Q (2013) Elevated serine protease HtrA1 inhibits cell proliferation, reduces invasion, and induces apoptosis in esophageal squamous cell carcinoma by blocking the nuclear factor-κB signaling pathway. Tumor Biol 34:317–328

    CAS  Google Scholar 

  146. He X, Ota T, Liu P, Su C, Chien J, Shridhar V (2010) Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res 8:3109–3018

    Google Scholar 

  147. Narkiewicz J, Klasa-Mazurkiewicz D, Zurawa-Janicka D, Skorko-Glonek J, Emerich J, Lipinska B (2008) Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clin Biochem 41:561–569

    CAS  PubMed  Google Scholar 

  148. Bowden MA, Di Nezza-Cossens LA, Jobling T, Salamonsen LA, Nie G (2006) Serine proteases HTRA1 and HTRA3 are down-regulated with increasing grades of human endometrial cancer. Gynecol Oncol 103:253–260

    CAS  PubMed  Google Scholar 

  149. Zhu F, Jin L, Luo TP, Luo GH, Tan Y, Qin XH (2010) Serine protease HtrA1 expression in human hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 9:508–512

    PubMed  Google Scholar 

  150. Baldi A, De Luca A, Morini M, Battista T, Felsani A, Baldi F, Catricalà C, Amantea A, Noonan D, Albini A, Natali P, Lombardi D, Paggi M (2002) The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 21:6684–6688

    CAS  PubMed  Google Scholar 

  151. Baldi A, Mottolese M, Vincenzi B, Campioni M, Mellone P, Di Marino M, di Crescenzo V, Visca P, Menegozzo S, Spugnini E, Citro G, Ceribelli A, Mirri A, Chien J, Shridhar V, Ehrmann M, Santini M, Facciolo F (2008) The serine protease HtrA1 is a novel prognostic factor for human mesothelioma. Pharmacogenomics 9:1069–1077

    CAS  PubMed  Google Scholar 

  152. Hadfield KD, Rock CF, Inkson CA, Dallas SL, Sudre L, Wallis GA, Boot-Handford RP, Canfield AE (2008) HtrA1 inhibits mineral deposition by osteoblasts: requirement for the protease and PDZ domains. J Biol Chem 283:5928–5938

    CAS  PubMed  Google Scholar 

  153. Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, Kawaichi M, Oka C (2005) Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37:323–336

    CAS  PubMed  Google Scholar 

  154. Grau S, Richards P, Kerr B, Hughes C, Caterson B, Williams A, Junker U, Jones S, Clausen T, Ehrmann M (2006) The role of human HtrA1 in arthritic disease. J Biol Chem 281:6124–6129

    CAS  PubMed  Google Scholar 

  155. Grau S, Baldi A, Bussani R, Tian X, Stefanescu R, Przybylski M, Richards P, Jones SA, Shridhar V, Clausen T, Ehrmann M (2005) Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc Natl Acad Sci U S A 17:6021–6026

    Google Scholar 

  156. Martins L, Turk B, Cowling V, Borg A, Jarrell E, Cantley L, Downward J (2003) Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 278:49417–49427

    CAS  PubMed  Google Scholar 

  157. An E, Sen S, Park SK, Gordish-Dressman H, Hathout Y (2010) Identification of novel substrates for the serine protease HTRA1 in the human RPE secretome. Invest Ophthalmol Vis Sci 7:3379–3386

    Google Scholar 

  158. Graham JR, Chamberland A, Lin Q, Li XJ, Dai D, Zeng W, Ryan MS, Rivera-Bermúdez MA, Flannery CR, Yang Z (2013) Serine protease HTRA1 antagonizes transforming growth factor-β signaling by cleaving its receptors and loss of HTRA1 <italic> in vivo </italic> enhances bone formation. PLoS ONE 8, e74094

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Sohn J, Grant R, Sauer R (2007) Allosteric activation of DegS, a stress sensor PDZ protease. Cell 131:572–583

    CAS  PubMed  Google Scholar 

  160. Wu G, Chai J, Suber TL, Wu J-W, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    CAS  PubMed  Google Scholar 

  161. Martins L, Iaccarino I, Tenev T, Gschmeissner S, Totty N, Lemoine N, Savopoulos J, Gray C, Creasy C, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    CAS  PubMed  Google Scholar 

  162. Hegde R, Srinivasula S, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos A, Fernandes-Alnemri T, Alnemri E (2002) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem 277:432–438

    CAS  PubMed  Google Scholar 

  163. Verhagen A, Silke J, Ekert P, Pakusch M, Kaufmann H, Connolly L, Day C, Tikoo A, Burke R, Wrobel C, Moritz R, Simpson R, Vaux D (2002) HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem 277:445–454

    CAS  PubMed  Google Scholar 

  164. Kadomatsu T, Mori M, Terada K (2007) Mitochondrial import of Omi: the definitive role of the putative transmembrane region and multiple processing sites in the amino-terminal segment. Biochem Biophys Res Commun 2:516–521

    Google Scholar 

  165. Vande Walle L, Lamkanfi M, Vandenabeele P (2008) The mitochondrial serine protease HtrA2/Omi: an overview. VandeWalle 2008(5):453–460

    Google Scholar 

  166. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    CAS  PubMed  Google Scholar 

  167. Li W, Srinivasula S, Chai J, Li P, Wu J, Zhang Z, Alnemri E, Shi Y (2002) Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 9:436–441

    CAS  PubMed  Google Scholar 

  168. Chaganti LK, Kuppili RR, Bose K (2013) Intricate structural coordination and domain plasticity regulate activity of serine protease HtrA2. FASEB J 8:3054–3066

    Google Scholar 

  169. Bejugam PR, Kuppili RR, Singh N, Gadewal N, Chaganti LK, Sastry GM, Bose K (2012) Allosteric regulation of serine protease HtrA2 through novel non-canonical substrate binding pocket. PLoS ONE 8, e55416

    Google Scholar 

  170. Singh N, D'Souza A, Cholleti A, Sastry GM, Bose K (2014) Dual regulatory switch confers tighter control on HtrA2 proteolytic activity. FEBS J 281:2456–2470

    CAS  PubMed  Google Scholar 

  171. Bhuiyan MS, Fukunaga K (2008) Activation of HtrA2, a mitochondrial serine protease mediates apoptosis: current knowledge on HtrA2 mediated myocardial ischemia/reperfusion injury. Cardiovasc Ther 26:224–232

    CAS  PubMed  Google Scholar 

  172. Boldin MP, Mett IL, Varfolomeev EE, Chumakov I, Shemer-Avni Y, Camonis JH, Wallach D (1995) Self-association of the “death domains” of the p55 tumor necrosis factor (TNF) receptor and Fas/APO1 prompts signaling for TNF and Fas/APO1 effects. J Biol Chem 1:387–391

    Google Scholar 

  173. Yang Q, Church-Hajduk R, Ren J, Newton M, Du C (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17:1487–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N, Fernandes-Alnemri T, Alnemri ES (2003) Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 34:31469–31472

    Google Scholar 

  175. Bhuiyan MS, Fukunaga K (2007) Inhibition of HtrA2/Omi ameliorates heart dysfunction following ischemia/reperfusion injury in rat heart in vivo. Eur J Pharmacol 557:168–177

    CAS  PubMed  Google Scholar 

  176. Trencia A, Fiory F, Maitan M, Vito P, Barbagallo A, Perfetti A, Miele C, Ungaro P, Oriente F, Cilenti L, Zervos A, Formisano P, Beguinot F (2004) Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15. J Biol Chem 279:46566–46572

    CAS  PubMed  Google Scholar 

  177. Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, Vandenabeele P (2007) Proteome-wide identification of HtrA2/Omi substrates. J Proteome Res 6:1006–1015

    CAS  PubMed  Google Scholar 

  178. Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnoczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 6959:721–727

    Google Scholar 

  179. Krick S, Shi S, Ju W, Faul C, Tsai SY, Mundel P, Bottinger EP (2008) Mpv17l protects against mitochondrial oxidative stress and apoptosis by activation of Omi/HtrA2 protease. Proc Natl Acad Sci U S A 37:14106–14111

    Google Scholar 

  180. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J (2004) Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol 22:9848–9862

    Google Scholar 

  181. Kooistra J, Milojevic J, Melacini G, Ortega J (2008) A new function of human HtrA2 as an amyloid-beta oligomerization inhibitor. J Alzheimers Dis 2:281–294

    Google Scholar 

  182. Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS (2014) Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Mol Cell Res 1843:1295–1307

    CAS  Google Scholar 

  183. Zhang Y, Appleton B, Wu P, Wiesmann C, Sidhu S (2007) Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain. Protein Sci 16:2454–2471

    PubMed Central  PubMed  Google Scholar 

  184. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, Sidhu SS, Wiesmann C (2006) Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. J Biol Chem 31:22312–22320

    Google Scholar 

  185. Kuninaka S, Nomura M, Hirota T, Iida S-I, Hara T, Honda S, Kunitoku N, Sasayama T, Arima Y, Marumoto T, Koja K, Yonehara S, Saya H (2005) The tumor suppressor WARTS activates the Omi / HtrA2-dependent pathway of cell death. Oncogene 34:5287–5298

    Google Scholar 

  186. Cilenti L, Soundarapandian M, Kyriazis G, Stratico V, Singh S, Gupta S, Bonventre J, Alnemri E, Zervos AS (2004) Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J Biol Chem 279:50295–50301

    CAS  PubMed  Google Scholar 

  187. Jin S, Kalkum M, Overholtzer M, Stoffel A, Chait BT, Levine AJ (2003) CIAP1 and the serine protease HTRA2 are involved in a novel p53-dependent apoptosis pathway in mammals. Genes Dev 17:359–367

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Ding X, Patel M, Shen D, Herzlich AA, Cao X, Villasmil R, Klupsch K, Tuo J, Downward J, Chan C-C (2009) Enhanced HtrA2/Omi expression in oxidative injury to retinal pigment epithelial cells and murine models of neurodegeneration. Invest Ophthalmol Vis Sci 50:4957–4966

    PubMed Central  PubMed  Google Scholar 

  189. Johnson F, Kaplitt M (2009) Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders. PLoS ONE 4, e7100

    PubMed Central  PubMed  Google Scholar 

  190. Cilenti L, Lee Y, Hess S, Srinivasula S, Park KM, Junqueira D, Davis H, Bonventre JV, Alnemri ES, Zervos AS (2003) Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 13:11489–11494

    Google Scholar 

  191. Bhuiyan MS, Fukunaga K (2009) Mitochondrial serine protease HtrA2/Omi as a potential therapeutic target. Curr Drug Targets 10:372–383

    CAS  PubMed  Google Scholar 

  192. Nie GY, Li Y, Minoura H, Batten L, Ooi GT, Findlay JK, Salamonsen LA (2003) A novel serine protease of the mammalian HtrA family is up-regulated in mouse uterus coinciding with placentation. Mol Hum Reprod 5:279–290

    Google Scholar 

  193. Nie GY, Hampton A, Li Y, Findlay JK, Salamonsen LA (2003) Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2. Biochem J 1:39–48

    Google Scholar 

  194. Beleford D, Liu Z, Rattan R, Quagliuolo L, Boccellino M, Baldi A, Maguire J, Staub J, Molina J, Shridhar V (2009) Methylation induced gene silencing of HtrA3 in smoking-related lung cancer. Clin Cancer Res 2:389–409

    Google Scholar 

  195. Beleford D, Liu Z, Rattan R, Quagliuolo L, Boccellino M, Baldi A, Maguire J, Staub J, Molina J, Shridhar V (2010) Methylation induced gene silencing of HtrA3 in smoking-related lung cancer. Clin Cancer Res 2:398–409

    Google Scholar 

  196. Narkiewicz J, Klasa-Mazurkiewicz D, Zurawa-Janicka D, Skorko-Glonek J, Emerich J, Lipinska B (2008) Changes in mRNA and protein levels of human HtrA1, HtrA2 and HtrA3 in ovarian cancer. Clin Biochem 7–9:561–569

    Google Scholar 

  197. Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, Wiesmann C, Skelton NJ, Sidhu SS (2007) Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Sci 11:2454–2471

    Google Scholar 

  198. Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    CAS  PubMed  Google Scholar 

  199. Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416:455–459

    CAS  PubMed  Google Scholar 

  200. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T (2004) Crystal structure of the DegS stress sensor: how a PDZ domain recognizes misfolded protein and activates a protease. Cell 117:483–494

    CAS  PubMed  Google Scholar 

  201. Bowden MA, Drummond AE, Fuller PJ, Salamonsen LA, Findlay JK, Nie G (2010) High-temperature requirement factor A3 (Htra3): a novel serine protease and its potential role in ovarian function and ovarian cancers. Mol Cell Endocrinol 327:13–18

    CAS  PubMed  Google Scholar 

  202. Tocharus J, Tsuchiya A, Kajikawa M, Ueta Y, Oka C, Kawaichi M (2004) Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling. Dev Growth Differ 3:257–274

    Google Scholar 

  203. Nie G, Findlay JK, Salamonsen LA (2005) Identification of novel endometrial targets for contraception. Contraception 4:272–281

    Google Scholar 

  204. Nie G, Li Y, Hale K, Okada H, Manuelpillai U, Wallace EM, Salamonsen LA (2006) Serine peptidase HTRA3 is closely associated with human placental development and is elevated in pregnancy serum. Biol Reprod 2:366–374

    Google Scholar 

  205. Bowden MA, Li Y, Liu Y-X, Findlay JK, Salamonsen LA, Nie G (2008) HTRA3 expression in non-pregnant rhesus monkey ovary and endometrium, and at the maternal-fetal interface during early pregnancy. Reprod Biol Endocrinol 6:22

    Google Scholar 

  206. Singh H, Makino SI, Endo Y, Nie G (2011) Inhibition of HTRA3 stimulates trophoblast invasion during human placental development. Hum Reprod 4:748–757

    Google Scholar 

  207. Inagaki A, Nishizawa H, Ota S, Suzuki M, Inuzuka H, Miyamura H, Sekiya T, Kurahashi H, Udagawa Y (2012) Upregulation of HtrA4 in the placentas of patients with severe pre-eclampsia. Placenta 11:919–926

    Google Scholar 

  208. Wang LJ, Cheong ML, Lee Y-S, Lee M-T, Chen H (2012) High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Mol Cell Biol 18:3707–3717

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaganti, L.K., Singh, N., Bose, K. (2015). Cathepsins and HtrAs – Multitasking Proteases in Programmed Cell Death. In: Bose, K. (eds) Proteases in Apoptosis: Pathways, Protocols and Translational Advances. Springer, Cham. https://doi.org/10.1007/978-3-319-19497-4_4

Download citation

Publish with us

Policies and ethics