Skip to main content

Yeast Diversity and Flavor Compounds

Fungal Metabolites

Abstract

Yeast had participated with humans in food fermentation since the production of wine and bread, more than 10,000 years of shared history. It is well understood that fungi diversity is still underestimated and that we are far from understanding its importance and potential impact in biotechnology. Flavor compounds as “secondary metabolism” are very sensitive to fermentation conditions and mixed cultures, and although we had experience an exponential development of molecular biology in the last 30 years, metabolomics is still in its infancy. It was demonstrated in recent years that increase strain and species yeast diversity in a fermentation system increases sensory complexity and chemical aroma compound diversity in the final fermented product. Flavor compounds had many key functions for yeast, such as for survival and dispersion strategies, pheromone and defense mechanisms, and “quorum sensing” mechanisms for cell communication. Humans had taken advantage of many of these functions to increase taste and food sensory pleasure for a more exigent consumer, a phenomenon called “yeast domestication.” We focus this chapter mainly in the recent discussed yeast synthetic pathways for the formation of phenylpropanoid and terpenoid aroma compounds.

In addition, we will emphasize the current knowledge that grape and wine microbiology research has contributed to understand how complex natural and inoculated yeast flora can affect flavor quality. The flavor phenotype concept and how to screen natural flora and develop consortia starters to innovate in food biotechnology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Pangborn RM (1964) Sensory evaluation of foods-look backward and forward. Food Technol 18:63–37

    Google Scholar 

  2. Peynaud É, Peynaud EPJ, Oenologue F, Oenologist F (1980) Le goût du vin. Dunod, Paris

    Google Scholar 

  3. Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86:11–22

    Article  CAS  Google Scholar 

  4. Medina K, Boido E, Fariña L et al (2013) Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chem 141:2513–2521

    Article  CAS  Google Scholar 

  5. Carrau F, Gaggero C, Aguilar PS (2015) Yeast diversity and native vigor for flavor phenotypes. Trends Biotechnol 33:148–154

    Article  CAS  Google Scholar 

  6. Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol 68:61–80

    Article  CAS  Google Scholar 

  7. Cordente AG, Curtin CD, Varela C, Pretorius IS (2012) Flavour-active wine yeasts. Appl Microbiol Biotechnol 96:601–618

    Article  CAS  Google Scholar 

  8. Bushdid C, Magnasco MO, Vosshall LB, Keller A (2014) Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:1370–1372

    Article  CAS  Google Scholar 

  9. Matsui A, Go Y, Niimura Y (2010) Degeneration of olfactory receptor gene repertories in primates: no direct link to full trichromatic vision. Mol Biol Evol 27:1192–1200

    Article  CAS  Google Scholar 

  10. Dikicioglu D, Pir P, Oliver SG (2013) Predicting complex phenotype–genotype interactions to enable yeast engineering: Saccharomyces cerevisiae as a model organism and a cell factory. Biotechnol J 8:1017–1034

    Article  CAS  Google Scholar 

  11. Schuller D (2010) Better yeast for better wine – genetic improvement of Saccharomyces cerevisiae wine strains. In: Rai M, Kövics G (eds) Progress in mycology. Springer, Netherlands, pp 1–49

    Chapter  Google Scholar 

  12. Marullo P, Bely M, Masneuf-Pomarede I, Aigle M, Dubourdieu D (2004) Inheritable nature of enological quantitative traits is demonstrated by meiotic segregation of industrial wine yeast strains. FEMS Yeast Res 4:711–719

    Article  CAS  Google Scholar 

  13. Hubmann G, Foulquié-Moreno MR, Nevoigt E et al (2013) Quantitative trait analysis of yeast biodiversity yields novel gene tools for metabolic engineering. Metab Eng 17:68–81

    Article  CAS  Google Scholar 

  14. Bisson LF, Karpel JE (2010) Genetics of yeast impacting wine quality. Ann Rev Food Sci Technol 1:139–162

    Article  CAS  Google Scholar 

  15. Takeoka G, Buttery RG, Flath RA, Teranishi R, Wheeler E, Wieczorek R, Guentert M (1989) Volatile constituents of pineapple (Ananas cosmus [L.] Merr). In: Teranishi R, Buttery RG, Shahidi F (eds) Flavor chemistry : trends and developments. ACS symposium series 388, American Chemical Society, Washington DC, 1989, pp 223–237

    Google Scholar 

  16. Rychlik M, Schieberle P, Grosch W (1998) Compilation of odor thresholds, odor qualities and retention indices of key food odorants. Deutsche Forschungsanstalt and Institut für Lebensmittelchemie der Technischen Universität München, Garching, Germany

    Google Scholar 

  17. Guth H (1997) Quantitation and sensory studies of character impact odorants of different white wine varieties. J Agric Food Chem 45:3027–3032

    Article  CAS  Google Scholar 

  18. Ferreira V, López R, Cacho JF (2000) Quantitative determination of the odorants of young red wines from different grape varieties. J Sci Food Agric 80:1659–1667

    Article  CAS  Google Scholar 

  19. Clean C (1996) MSDS. Safety data sheet. http://cleanandsolve.com/media/1044/safety-data-sheet-clean-and-solve.pdf

  20. Akita O, Hasuo T, Hara S, Yoshizawa K (1988) Studies on the brewing of alcoholic beverage by the system of fermentation following after saccharification. IX: ethyl 4-hydroxybutyrate and y-butyrolactone in saké. Hakkokogaku Kaishi-J Soc Ferment Technol 66:149–155

    CAS  Google Scholar 

  21. Lambrechts MG, Pretorius IS (2000) Yeast and its importance to wine aroma a review. S Afr J Enol Vitic 21:97–129

    CAS  Google Scholar 

  22. Rapp A, Versini G (1996) Influence of nitrogen compounds in grapes on aroma compounds of wines. Vitic Enol Sci 51:193–203

    CAS  Google Scholar 

  23. Swiegers JH, Bartowsky PA, Henschke PA, Pretorius IS (2005) Yeast and bacterial modulation of wine aroma and flavour. Aust J Grape Wine Res 11:139–173

    Article  CAS  Google Scholar 

  24. Carrau F, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E (2008) Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196–1207

    Article  CAS  Google Scholar 

  25. Cozzolino D, Smyth HE, Lattey KA et al (2006) Combining mass spectrometry based electronic nose, visible-near infrared spectroscopy and chemometrics to assess the sensory properties of Australian Riesling wines Anal. Chim Acta 563:319–324

    Article  CAS  Google Scholar 

  26. Ferreira V, Fernandez P, Cacho JF (1996) A study of factors affecting wine volatile composition and its application in discriminant analysis. Food Sci Technol 29:251–259

    CAS  Google Scholar 

  27. Guth H, Sies A (2002) Flavour of wines: towards an understanding by reconstitution experiments and an analysis of ethanol’s effect on odour activity of key compounds. In: Blair RJ, Williams PJ, Høj PB (eds) Proceedings of the 11th Australian wine industry technical conference. Adelaide, pp 128–139

    Google Scholar 

  28. Smyth HE, Cozzolino D, Herderich MJ, Sefton MA, Francis IL (2005) Relating volatile composition to wine aroma: identification of key aroma compounds in Australian white wines. In: Blair R, Williams P, Pretorius S (eds) Proceedings of the Twelfth Australian wine industry technical conference. Australian Wine Industry Technical Conference, Melbourne/Adelaide, pp 31–33

    Google Scholar 

  29. Pires EJ, Teixeira JA, Brányik T, Vicente AA (2014) Yeast: the soul of beer’s aroma – a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98:1937–1949

    Article  CAS  Google Scholar 

  30. Nordstrom K (1964) Studies on the formation of volatile esters in fermentation with brewer’s yeast. Sven Kem Tidskr 76:510–543

    Google Scholar 

  31. Reazin G, Scales H, Andreasen A (1970) Mechanism of major congener formation in alcoholic grain fermentations. J Agric Food Chem 18:585–589

    Article  CAS  Google Scholar 

  32. Fariña L, Medina K, Urruty M, Boido E, Dellacassa E, Carrau F (2012) Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae. Food Chem 134:933–939

    Article  CAS  Google Scholar 

  33. Nykanen L (1986) Formation and occurrence of flavour compounds in wine and distilled alcoholic beverages. Am J Enol Vitic 37:84–96

    CAS  Google Scholar 

  34. Muller CJ, Kepner RE, Webb AD (1973) Lactones in wines. Am J Enol Vitic 24:5–9

    CAS  Google Scholar 

  35. Vos PJA, Gray RS (1979) The origin and control of hydrogen sulfide during fermentation of grape must. Am J Enol Vitic 30:187–197

    CAS  Google Scholar 

  36. Bell SJ, Henschke PA (2005) Implications of nitrogen nutrition for grapes, fermentation and wine. Aust J Grape Wine Res 11:242–295

    Article  CAS  Google Scholar 

  37. Ugliano M, Fedrizzi B, Siebert T, Travis B, Magno F, Versini G, Henschke PA (2009) Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in Shiraz fermentation and wine. J Agric Food Chem 57:4948–4955

    Article  CAS  Google Scholar 

  38. Escudero A, Campo E, Fariña L, Cacho J, Ferreira V (2007) Analytical characterization of the aroma of five premium red wines. Insights into the role of odor families and the concept of fruitiness of wines. J Agric Food Chem 55:4501–4510

    Article  CAS  Google Scholar 

  39. Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B (2015) Evolution of volatile sulfur compounds during wine fermentation. J Agric Food Chem 63:8017–8024

    Article  CAS  Google Scholar 

  40. Hjelmeland AK, Ebeler SE (2015) Glycosidically bound volatile aroma compounds in grapes and wine: a review. Am J Enol Vitic 66:1–11.

    Google Scholar 

  41. Boido E, Lloret A, Medina K, Farñia L, Carrau F, Versini G, Dellacassa E (2003) Aroma composition of Vitis vinifera cv. Tannat: the typical red wine from Uruguay. J Agric Food Chem 51:5408–5413

    Article  CAS  Google Scholar 

  42. Fang Y, Qian MC (2006) Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities. J Agric Food Chem 54:8567–8573

    Article  CAS  Google Scholar 

  43. González-Barreiro C, Rial-Otero R, Cancho-Grande B, Simal-Gándara J (2013) Wine aroma compounds in grapes: a critical review. Crit Rev Food Sci Nutr 55:202–218

    Article  CAS  Google Scholar 

  44. Robinson AL, Boss PK, Solomon PS, Trengove RD, Heymann H, Ebeler SE (2014) Origins of grape and wine aroma. Part 1. Chemical components and viticultural impacts. Am J Enol Vitic 65:1–24

    Article  Google Scholar 

  45. Sefton M, Francis I, Williams P (1993) The volatile composition of Chardonnay juices: a study by flavor precursor analysis. Am J Enol Vitic 44:359–370

    CAS  Google Scholar 

  46. Francis IL, Kassara S, Noble AC, Williams PJ (1998) The contribution of glycoside precursors to cabernet sauvignon and merlot aroma: sensory and compositional studies. In: Waterhouse A, Ebeler S (eds) Chemistry of wine flavor, ACS symposium series. American Chemical Society, Washington, DC, pp 13–30

    Chapter  Google Scholar 

  47. Versini G, Carlin S, Nicolini G, Dellacassa E, Carrau F (1999) Updating of varietal aroma components in wines. In: Mendoza, Argentina: VII Latinamerican congress of enology and viticulture. Asociacion de Enologos de Argentina, Argentina, pp 325–349

    Google Scholar 

  48. Günata ZY, Bitteur S, Brillouet J-M, Bayonove CL, Cordonnier RE (1988) Sequential enzymic hydrolysis of potentially aromatic glycosides from grapes. Carbohydr Res 184:139–149

    Article  Google Scholar 

  49. Günata Z, Blondeel C, Vallier MJ, Lepoutre JP, Sapis JC, Watanabe N (1998) An endoglycosidase from grape berry skin of cv. M. Alexandria hydrolyzing potentially aromatic disaccharide glycosides. J Agric Food Chem 46:2748–2753

    Article  Google Scholar 

  50. Ugliano M, Bartowsky EJ, McCarthy J, Moio L, Henschke PA (2006) Hydrolysis and transformation of grape glycosidically bound volatile compounds during fermentation with three Saccharomyces yeast strains. J Agric Food Chem 54:6322–6331

    Article  CAS  Google Scholar 

  51. Palmeri R, Spagna G (2007) β-Glucosidase in cellular and acellular form for winemaking application. Enzyme Microb Technol 40:382–389

    Article  CAS  Google Scholar 

  52. Sarry J-E, Günata YZ (2004) Plant and microbial glycoside hydrolases: volatile release from glycosidic aroma precursors. Food Chem 87:509–521

    Article  CAS  Google Scholar 

  53. Ayran AP, Wilson B, Strauss CR, Williams PJ (1987) The properties of glycosidases of Vitis vinifera and a comparison of their β-glucosidase activity with that of exogenous enzymes. An assessment of possible applications in enology. Am J Enol Vitic 38:182–188

    Google Scholar 

  54. Günata YZ, Bayonove CL, Tapiero C, Cordonnier RE (1990) Hydrolysis of grape monoterpenyl β-d-glucosides by various β-glucosidases. J Agric Food Chem 38:1232–1236

    Article  Google Scholar 

  55. Biron C, Cordonnier R, Glory O, Günata Z, Sapis JC (1988) Étude, dans le raisin, de l’activité β-glucosidase. Connaissance de la Vigne et du Vin 22:125–134

    CAS  Google Scholar 

  56. Lecas M, Günata ZY, Sapis J-C, Bayonove L (1991) Purification and partial characterization of β-glucosidase from grape. Phytochemistry 30:451–454

    Article  CAS  Google Scholar 

  57. Williams PJ (1993) Hydrolytic flavor release in fruit and wines through hydrolysis of nonvolatile precursors. In: Acree TE, Teranishi R (eds) Flavor science – sensible principles and techniques. American Chemical Society, Washington, DC, pp 287–303

    Google Scholar 

  58. Manzanares P, Rojas V, Genovés S, Vallés S (2000) A preliminary search for anthocyanin-β-d-glucosidase activity in non-Saccharomyces wine yeasts. Int J Food Sci Technol 2000:95–103

    Article  Google Scholar 

  59. McMahon H, Zoecklein BW, Fugelsang K, Jasinski Y (1999) Quantification of glycosidase activities in selected yeast and lactic acid bacteria. J Ind Microbiol Biotechnol 23:198–203

    Article  CAS  Google Scholar 

  60. Riccio P, Rossano R, Vinella M et al (1999) Extraction and immobilization in one-step of two β-glucosidases released from a yeast strain of Debaryomyces hansenii. Enzyme Microb Technol 24:123–129

    Article  CAS  Google Scholar 

  61. Rosi I, Vinella M, Domizio P (1994) Characterization of β-glucosidase activity in yeast of oenological origin. J Appl Bacteriol 77:519–527

    Article  CAS  Google Scholar 

  62. Strauss ML, Jolly NP, Lambrechts MG, Renault P (2001) Screening for the production of extracellular hydrolytic enzymes by non-Saccharomyces wine yeasts. J Appl Microbiol 91:182–190

    Article  CAS  Google Scholar 

  63. Bisotto A, Julien A, Rigou P, Schneider R, Salmon J (2015) Evaluation of the inherent capacity of commercial yeast strains to release glycosidic aroma precursors from Muscat grape must. Aust J Grape Wine Res 21:194–199

    Article  CAS  Google Scholar 

  64. Ciani M, Piccioti G (1995) The growth kinetics and fermentation behavior of some non-Saccharomyces yeast associated with winemaking. Biotechnol Lett 17:1247–1250

    Article  CAS  Google Scholar 

  65. Fleet GH (1992) Spoilage yeast. CRC Crit Rev Biotechnol 12:1–44

    Article  CAS  Google Scholar 

  66. Calabretti A, La Cara F, Sorrentino A et al (2012) Characterization of volatile fraction of typical Irpinian wines fermented with a new starter yeast. World J Microbiol Biotechnol 28:1433–1442

    Article  CAS  Google Scholar 

  67. Pérez G, Fariña L, Barquet M, Boido E, Gaggero C, Dellacassa E, Carrau F (2011) A quick screening method to identify β-glucosidase activity in native wine yeast strains: Application of Esculin Glycerol Agar (EGA) medium. World J Microbiol Biotechnol 27:47–55

    Article  CAS  Google Scholar 

  68. Williams PJ, Cynkar W, Francis IL, Gray JD, Iland PG, Coombe BG (1995) Quantification of glycosides in grapes, juices and wines through a determination of glycosyl-glucose. J Agric Food Chem 43:121–128

    Article  CAS  Google Scholar 

  69. Chassagne D, Vernizeau S, Nedjmac M, Alexandre H (2005) Hydrolysis and sorption by Saccharomyces cerevisiae strains of Chardonnay grape must glycosides during fermentation. Enzyme Microb Technol 37:212–217

    Article  CAS  Google Scholar 

  70. Zoecklein BW, Marcy JE, Williams JM, Jasinski Y (1997) Effect of native yeasts and selected strains of Saccharomyces cerevisiae on glycosyl glucose, potential volatile terpenes, and selected aglycones of white riesling (Vitis vinifera L.) wines. J Food Compos Anal 10:55–65

    Article  CAS  Google Scholar 

  71. Darriet P, Boidron J-N, Dubourdieu D (1988) L’hydrolyse des hétérosides terpéniques du Muscat a Petits Grains par les enzymes périplasmiques de Saccharomyces cerevisiae. Connaissance de la Vigne et du Vin 22:189–195

    CAS  Google Scholar 

  72. Delcroix A, Günata Z, Sapis J-C, Salmon J-M, Bayonove C (1994) Glycosidase activities of three enological yeast strains during winemaking: effect on the terpenol content of Muscat wine. Am J Enol Vitic 45:291–296

    CAS  Google Scholar 

  73. Charoenchai C, Fleet GH, Henschke PA, Todd BEN (1997) Screening of non-Saccharomyces wine yeasts for the presence of extracellular hydrolytic enzymes. Aust J Grape Wine Res 3:2–8

    Article  CAS  Google Scholar 

  74. Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Comparative study of extracellular and intracellular b-glucosidases of a new strain of Zygosaccharomyces bailii isolated from fermenting agave juice. J Appl Bacteriol 78:270–280

    Article  CAS  Google Scholar 

  75. Vasserot Y, Christiaens H, Chemardin P, Arnaud A, Galzy P (1989) Purification and properties of a β-glucosidase of Hanseniaspora vineae Van der Walt and Tscheuschner with the view to its utilization in fruit aroma liberation. J Appl Bacteriol 66:271–279

    Article  CAS  Google Scholar 

  76. Yanai T, Sato M (1999) Isolation and properties of β-glucosidase produced by Debaryomyces hansenii and its application in winemaking. Am J Enol Vitic 50:231–235

    CAS  Google Scholar 

  77. Gueguen Y, Chemardin P (1996) A very efficient β-glucosidase catalyst for the hydrolysis of flavor precursors of wines and fruit juices. J Agric Food Chem 44:2336–2340

    Article  CAS  Google Scholar 

  78. Madrigal T, Maicas S, Tolosa JJM (2013) Glucose and ethanol tolerant enzymes produced by Pichia (Wickerhamomyces) isolates from enological ecosystems. Am J Enol Vitic 64:126–133

    Article  CAS  Google Scholar 

  79. González-Pombo P, Pérez G, Carrau F, Guisán JM, Batista-Viera F, Brena BM (2008) One-step purification and characterization of an intracellular β-glucosidase from Metschnikowia pulcherrima. Biotechnol Lett 30:1469–1475

    Article  CAS  Google Scholar 

  80. Barbagallo RN, Spagna G, Palmeri R, Restuccia C, Giudici P (2004) Selection, characterization and comparison of β-glucosidase from mould and yeasts employable for enological applications. Enzyme Microb Technol 35:58–66

    Article  CAS  Google Scholar 

  81. Gueguen Y, Chemardin P, Arnaud A, Galzy P (1995) Comparative study of extracellular and intracellular β-glucosidases of a new strain of Zygosaccharomyces bailii isolated from fermenting agave juice. J Appl Bact 78:270–280

    Article  CAS  Google Scholar 

  82. Turan Y, Zheng M (2005) Purification and characterization of an intracellular β-glucosidase from the methylotrophic yeast Pichia pastoris. Biochemistry (Moscow) 70:1363–1368

    Article  CAS  Google Scholar 

  83. Palmeri R, Spagna G (2007) β-Glucosidase in cellular and acellular form for winemaking application. Enz Microb Technol 40:382–389

    Article  CAS  Google Scholar 

  84. Belancic A, Gunata Z, Vallier M-J, Agosin E (2003) β-Glucosidase from the grape native yeast Debaryomyces vanrijiae: purification, characterization, and its effect on monoterpene content of a Muscat grape juice. J Agric Food Chem 51:1453–1459

    Article  CAS  Google Scholar 

  85. González-Pombo P, Fariña L, Carrau F, Batista-Viera F, Brena BM (2011) A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem 46:385–389

    Article  CAS  Google Scholar 

  86. Henschke PA, Jiranek V (1993) Yeast: metabolism of nitrogen compounds. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, GmbH, Chur-London-New York, pp 77–164

    Google Scholar 

  87. Rapp A, Güntert M (1985) Changes in aroma substances during the storage of white wines in bottles. In: Charalambous G (ed) 4th International flavor conference. in the shelf life of foods and beverages. Rhodes, pp 141–167

    Google Scholar 

  88. Rapp A, Güntert M, UH Z (1985) Changes in aroma substances during the storage in bottles of white wines of the Riesling variety. Lebensm Unters Forsch 180:109–116

    Article  CAS  Google Scholar 

  89. Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186

    Article  CAS  Google Scholar 

  90. Dudareva N, Negre F, Nagegowda DA, Orlova I (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–444

    Google Scholar 

  91. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  Google Scholar 

  92. Verpoorte R, Alfermann AW (2000) Metabolic engineering of plant secondary metabolism. Kluwer, Dordrecht, pp 1–30

    Book  Google Scholar 

  93. Page JE, Hause G, Raschke M (2004) Functional analysis of the final steps of the 1-deoxy-D-xylulose 5-phosphate (DXP) pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol 134:1401–1413

    Article  CAS  Google Scholar 

  94. Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism. CRC Press, Boca Raton, pp 222–299

    Google Scholar 

  95. Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  CAS  Google Scholar 

  96. Rodriguez-Concepcion M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  CAS  Google Scholar 

  97. Bochar DA, Friesen JA, Stauffacher CV, Rodwell VW (1999) Isoprenoids including steroids and carotenoids. In: Cane DE (ed) Comprehensive natural product chemistry. Pergamon Press, Tarrytown, pp 15–44

    Chapter  Google Scholar 

  98. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574

    Article  CAS  Google Scholar 

  99. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524

    Article  CAS  Google Scholar 

  100. Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H (1996) Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J Am Chem Soc 118:2564–2566

    Article  CAS  Google Scholar 

  101. De Carvalho CR, Da Fonseca MR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142

    Article  CAS  Google Scholar 

  102. Fernandez-Gonzalez M, Di Stefano R, Briones A (2003) Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiol 20:35–41

    Article  CAS  Google Scholar 

  103. Ramey DD (1995) Low input winemaking: let nature do the work. In: Ninth Australian wine industry technical conference. Adelaide, pp 26–29

    Google Scholar 

  104. Carrau FM (2005) Levaduras nativas para Enologia de Minima Intervencion. Biodiversidad, Seleccion y Caracterizacion. Agrociencia 9:387–399

    Google Scholar 

  105. Heard G, Fleet G (1986) Occurrence and growth of yeast species during the fermentation of some Australian wines. Food Technol Aust 38:22–25

    Google Scholar 

  106. Gramatica P, Manitto P, Ranzi PM, Delbianco A, Francavilla M (1982) Stereospecific reduction of geraniol to (R.)-(+)-citronellol by Saccharomyces cerevisiae. Experientia 38:775–776

    Article  CAS  Google Scholar 

  107. King A, Dickinson JR (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16:499–506

    Article  CAS  Google Scholar 

  108. Corey EJ, Matsuda SPT, Bartel B (1994) Molecular cloning, characterization, and overexpression of ERG7, the Saccharomyces cerevisiae gene encoding lanosterol synthase. Proc Natl Acad Sci U S A 91:2211–2215

    Article  CAS  Google Scholar 

  109. Lynen F (1964) The pathway from “activated acetic acid” to the terpenes and fatty acids. In: Royal caroline institute, pp 103–138. www.nobel.se/medicine/laureates/1964/lynen-lecture.pdf

  110. Ratledge C, Evans CT (1989) Lipids and their metabolism. In: The yeasts. Academic, London, pp 367–455

    Google Scholar 

  111. Huang H-R, Xia X-K, She Z-G, Lin Y-C, Vrijmoed L, Gareth JE (2006) A new chloro-monoterpene from the mangrove endophytic fungus Tryblidiopycnis sp. (4275). J Asian Nat Prod Res 8:609–612

    Article  CAS  Google Scholar 

  112. Liu J, Zhang W, Du G, Chen J, Zhou J (2013) Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae. J Biotechnol 168:446–451

    Article  CAS  Google Scholar 

  113. Lanza E, Palmer JK (1977) Biosynthesis of monoterpenes by Ceratocystis moniliformis. Phytochem 16:1555–1560

    Article  CAS  Google Scholar 

  114. Hornby JM, Jensen EC, Lisec AD et al (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992

    Article  CAS  Google Scholar 

  115. Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2010) Candida species extracellular alcohols: production and effect in sessile cells. J Bas Microbiol 50:S89–S97

    Article  Google Scholar 

  116. Nishino T, Suzuki N, Katsuki H (1982) Enzymatic formation of nerolidol in cell-free extract of Rhodotorula glutinis. J Biochem 92:1731–1740

    CAS  Google Scholar 

  117. Wang C, Kim J-Y, Choi E-S, Kim S-W (2011) Microbial production of farnesol (FOH): current states and beyond. Process Biochem 46:1221–1229

    Article  CAS  Google Scholar 

  118. Anderson MS, Yarger J, Burck C, Poulter C (1989) Farnesyl diphosphate synthetase. Molecular cloning, sequence, and expression of an essential gene from Saccharomyces cerevisiae. J Biol Chem 264:19176–19184

    CAS  Google Scholar 

  119. Chambon C, Ladeveze V, Oulmouden A, Servouse M, Karst F (1990) Isolation and properties of yeast mutants affected in farnesyl diphosphate synthetase. Curr Genet 18:41–46

    Article  CAS  Google Scholar 

  120. Fischer MJ, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892

    Article  CAS  Google Scholar 

  121. Disch A, Rohmer M (1998) On the absence of the glyceraldehyde 3-phosphate pyruvate pathway for isoprenoid biosynthesis in fungi and yeasts. FEMS Microbiol Lett 168:201–208

    Article  CAS  Google Scholar 

  122. Carrau F, Medina K, Boido E et al (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Rev 243:107–115

    Article  CAS  Google Scholar 

  123. Drawert F, Barton J (1978) Biosynthesis of flavor compounds by microorganisms. Production of monoterpenes by the yeast Kluyveromyces lactis. J Agric Food Chem 26:765–767

    Article  CAS  Google Scholar 

  124. Fagan GL, Kepner RE, Webb AD (1981) Production of linalool, cis-nerolidol and trans-farnesol by Saccharomyces fermentati growing as a film on simulated wine. Vitis 20:36–42

    CAS  Google Scholar 

  125. Hock R, Benda I, Schreier P (1984) Formation of terpenes by yeast during alcoholic fermentation. ZLebenUnter Forschung 179:450–452

    CAS  Google Scholar 

  126. Klingenberg A, Sprecher E (1985) Production of monoterpenes in liquid cultures by the yeast Ambrosiozyma monospora. Planta Med 3:264–265

    Article  Google Scholar 

  127. Jackson BE, Hart-Wells EA, Matsuda SPT (2003) Metabolic engineering to produce sesquiterpenes in yeast. Org Lett 5:1629–1632

    Article  CAS  Google Scholar 

  128. Ro D-K, Paradise EM, Ouelle M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  Google Scholar 

  129. Takahashi S, Yeo Y, Greenhagen BT et al (2007) Metabolic engineering of sesquiterpene metabolism in yeast. Biotechnol Bioeng 97:170–181

    Article  CAS  Google Scholar 

  130. Casey WM, Keesler GA, Parks L (1992) Regulation of partitioned sterol biosynthesis in Saccharomyces cerevisiae. J Bacteriol 174:7283–7288

    CAS  Google Scholar 

  131. Bejarano ER, Cerdá-Olmedo E (1992) Independence of the carotene and sterol pathways of phycomyces. FEBS Lett 306:209–212

    Article  CAS  Google Scholar 

  132. Domenech CE, Giordano W, Avalos J, Cerdá-olmedo E (1996) Separate compartments for the production of sterols, carotenoids and gibberellins in Gibberella fujikuroi. Eur J Biochem 239:720–725

    Article  CAS  Google Scholar 

  133. Lanza E, Palmer JK (1977) Biosynthesis of monoterpenes by Ceratocystis moniliformis. Phytochemistry 16:1555–1560

    Article  CAS  Google Scholar 

  134. Spurgeon SL, Porter JW (1981) Introduction. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds. Wiley, New York, pp 1–46

    Google Scholar 

  135. Rodríguez JM, Ruiz-Sala P, Ugarte M, Peñalva MA (2004) Fungal metabolic model for 3-Methylcrotonyl-CoA carboxylase deficiency. J Biol Chem 279:4578–4587

    Article  Google Scholar 

  136. Anderson MD, Che P, Song J, Nikolau BJ, Wurtele ES (1998) 3-methylcrotonyl coenzyme A carboxylase is a component of the mitochondrial leucine catabolic pathway. Plant Physiol 118:1127–1138

    Article  CAS  Google Scholar 

  137. Moss J, Lane MD (1971) The biotin-dependent enzymes. Advances in enzymology relat. Areas Mol Biol 35:321–442

    CAS  Google Scholar 

  138. Camesasca L, Minteguiaga M, Faruña L, Salzman V, Carrau F, Aguilar PS, Gaggero C (2014) COQ1 overexpression in Saccharomyces cerevisiae results in increased levels of isoprenoides. In: Annual meeting American society for microbiology. ASM, Boston

    Google Scholar 

  139. Oswald M, Fischer M, Dirninger N, Karst F (2007) Monoterpenoid biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 7:413–421

    Article  CAS  Google Scholar 

  140. Chambon C, Ladeveze V, Servouse M, Blanchard L, Javelot C, Vladescu B, Karst F (1991) Sterol pathway in yeast. Identification and properties of mutant strains defective in mevalonate diphosphate decarboxylase and farnesyl diphosphate synthetase. Lipids 26:633–636

    Article  CAS  Google Scholar 

  141. Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  142. Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC (1999) The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem 274:14831–14837

    Article  CAS  Google Scholar 

  143. Giorello F, Salzman VM et al (2014) Application of Hanseniaspora vineae strains. Searching for genes to explain increased flavor complexity in wines. In: International symposium specialized on yeasts, ISSY31. Vipava, p 39

    Google Scholar 

  144. Widhalm JR, Dudareva N (2015) A familiar ring to it: biosynthesis of plant benzoic acids. Mol Plant 8:83–97

    Article  CAS  Google Scholar 

  145. Scognamiglio J, Jones L, Vitale D, Letizia C, Api A (2012) Fragrance material review on benzyl alcohol. Food Chem Toxicol 50:S140–S160

    Article  CAS  Google Scholar 

  146. Guillen F, Martinez AT, Martinez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603–611

    Article  CAS  Google Scholar 

  147. Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20:1150–1161

    Article  CAS  Google Scholar 

  148. Bosse AK, Fraatz MA, Zorn H (2013) Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes. Food Chem 141:2952–2959

    Article  CAS  Google Scholar 

  149. Delfini C, Gaia P, Bardi L, Mariscalco G, Contiero M, Pagliara A (1991) Production of benzaldehyde, benzyl alcohol and benzoic acid by yeasts and Botrytis cinerea isolated Ïrom grape musts and wines. Vitis 30:253–263

    CAS  Google Scholar 

  150. Meganathan R (2001) Ubiquinone biosynthesis in microorganisms. FEMS Microbiol Rev 203:131–139

    Article  CAS  Google Scholar 

  151. Orlova I, Marshall-Colón A, Schnepp J et al (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    Article  CAS  Google Scholar 

  152. Hyun MW, Yun YH, Kim JY, Kim SH (2011) Fungal and plant phenylalanine ammonia-lyase. Mycobiology 39:257–265

    Article  CAS  Google Scholar 

  153. Uchiyama K, Kawaguchi K, Tochikura T, Ogata K (1969) Metabolism of aromatic amino acids in microorganisms: part III. Metabolism of cinnamic acid in Rhodotorula. Agric Biol Chem 33:755–763

    Article  CAS  Google Scholar 

  154. Martin V, Boido E, Giorello F, Mas A, Dellacassa E, Carrau F (2015) Syntheses of phenolic aroma compounds by Hanseniaspora vineae yeast strains contribute to increase flavor diversity of wines. In: International symposium specialized on yeasts, ISSY31. Perugia, p 30

    Google Scholar 

  155. Giorello FM, Berná L, Greif G et al (2014) Genome sequence of the native apiculate wine yeast Hanseniaspora vineae T02/19AF. Gen Announce 2(3):e00530-14

    Google Scholar 

  156. Jolly NP, Augustyn OPH, Pretorius IS (2006) The role and use of non-Saccharomyces yeasts in wine production. S Afr J Enol Vitic 27:15–39

    CAS  Google Scholar 

  157. Romano P, Suzzi G, Domizio P, Fatichenti F (1997) Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Anton Leeuw Int J Gen Mol Microbiol 71:239–242

    Article  CAS  Google Scholar 

  158. Fleet GH (2008) Wine yeasts for the future. FEMS Yeast Res 8:979–995

    Article  CAS  Google Scholar 

  159. Ciani M, Comitini F, Mannazzu I, Domizio P (2010) Controlled mixed culture fermentation: a new perspective on the use of non-Saccharomyces yeasts in winemaking. FEMS Yeast Res 10:123–133

    Article  CAS  Google Scholar 

  160. Zott K, Miot-Sertier C, Claisse O, Lonvaud-Funel A, Masneuf-Pomarede I (2008) Dynamics and diversity of non-Saccharomyces yeasts during the early stages in winemaking. Int J Food Microbiol 125:197–203

    Article  CAS  Google Scholar 

  161. Medina K, Boido E, Dellacassa E, Carrau F (2012) Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Int J Food Microbiol 157:245–250

    Article  CAS  Google Scholar 

  162. Anfang N, Brajkovich M, Goddard MR (2009) Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon blanc. Aust J Grape Wine Res 15:1–8

    Article  CAS  Google Scholar 

  163. Carrau F (2006) Native yeasts for low input winemaking: searching for wine diversity and increased complexity. In: University CS (ed) International wine microbiology symposium. California State University, Tenaya Lodge, pp 33–39

    Google Scholar 

  164. Barbosa C, Mendes-Faia A, Lage P, Mira NP, Mendes-Ferreira A (2015) Genomic expression program of Saccharomyces cerevisiae along a mixed-culture wine fermentation with Hanseniaspora guilliermondii. Microb Cell Fact 14:1–17

    Article  Google Scholar 

  165. Jolly NP, Augustyn OPH, Pretorius IS (2003) The effect of non-Saccharomyces yeasts on fermentation and wine quality. S Afr J Enol Vitic 24:55–62

    CAS  Google Scholar 

  166. Egli CM, Edinger WD, Mitrakul CM, Henick-Kling T (1998) Dynamics of indigenous and inoculated yeast populations and their effect on the sensory character of Riesling and Chardonnay wines. J Appl Microbiol 85:779–789

    Article  CAS  Google Scholar 

  167. Andorrà I, Berradre M, Mas A, Esteve-Zarzoso B, Guillamón JM (2012) Effect of mixed culture fermentations on yeast populations and aroma profile. LWT-Food Sci Technol 49:8–13

    Article  CAS  Google Scholar 

  168. Sadoudi M, Tourdot-Maréchal R, Rousseaux S et al (2012) Yeast–yeast interactions revealed by aromatic profile analysis of Sauvignon Blanc wine fermented by single or co-culture of non-Saccharomyces and Saccharomyces yeasts. Food Microbiol 32:243–253

    Article  CAS  Google Scholar 

  169. Carrau F (2003) Characterization of yeast in relation to the ability to utilize nitrogen – studies of aroma compounds. In: Food science and technology. Universidad de la Republica, Montevideo, p 296

    Google Scholar 

  170. Agenbach WA (1977) A study of must nitrogen content in relation to incomplete fermentations, yeast production and fermentation activity. In: Proceedings of the South African society for enology and viticulture. Stellenbosch, pp 66–88

    Google Scholar 

  171. Bell AA, Ough CS, Kliewer WM (1979) Effects on must and wine composition rates of fermentation, and wine quality of nitrogen fertilization of Vitis vinifera var. Thompson seedless grapevines. Am J Enol Vitic 30:124–129

    CAS  Google Scholar 

  172. Antonelli A, Castellari L, Zambonelli C, Rossi C (1999) Yeast influence on volatile composition of wines. J Agric Food Chem 47:1139–1144

    Article  CAS  Google Scholar 

  173. Cabrera MJ, Morero J, Ortega JM, Medina M (1988) Formation of ethanol, higher alcohols, esters and terpenes by five strains in musts from Pedro Ximenez grapes in various degrees of ripeness. Am J Enol Vitic 39:283–287

    CAS  Google Scholar 

  174. Cavazza A, Versini G, Dalla Serra A, Romano F (1989) Characterization of six S. cerevisiae strains on the basis of their volatile compound production, as found in wines of different aroma profiles. Yeast 5:163–167

    Google Scholar 

  175. Daudt CE, Ough CS (1973) A method for quantitative measurement of volatile acetate esters from wine. Am J Enol Vitic 24:125–129

    CAS  Google Scholar 

  176. Deleteil D, Jarry JM (1992) Characteristic effects of two commercial yeast strains on chardonnay wine volatiles and polysaccharide composition. Wine Ind J 2:29–33

    Google Scholar 

  177. Di Stefano R, Ciolfi G, Delfini C (1981) Composti volatili prodotti dei lieviti. Rivista Viticultura Enologia 34:342–347

    Google Scholar 

  178. Gil J, Mateo J, Jimenez M, Pastor A, Huerta T (1996) Aroma compounds in wine as influenced by apiculate yeasts. J Food Sci 61:1247–1266

    Article  CAS  Google Scholar 

  179. Giudici P, Romano P, Zambonelli C (1990) A biometric study of higher alcohol production in Saccharomyces cerevisiae. Can J Microbiol 36:61–64

    Article  CAS  Google Scholar 

  180. Herraiz T, Reglero G, Herraiz M, Martin-Alvarez PJ, Cabezudo MD (1990) The influence of the yeast and type of culture on the volatile composition of wines fermented without sulfur dioxide. Am J Enol Vitic 41:313–318

    CAS  Google Scholar 

  181. Lema C, Garcia-Jares C, Orriols I, Angulo L (1996) Contribution of Saccharomyces and non-Saccharomyces populations to the production of some components of Albarin˜o wine aroma. Am J Enol Vitic 47:206–216

    CAS  Google Scholar 

  182. Longo E, Velazquez JB, Sieiro C, Cansado J, Calo P, Villa TG (1992) Aroma compounds of Saccharomyces cerevisiae wine strains isolated from the Salnes region (Galicia, Spain). World J Microbiol Biotechnol 8:539–541

    Article  CAS  Google Scholar 

  183. Lurton I, Snakkers G, Roulland C, Galy B, Versavaud A (1995) Influence of the fermentation yeast strain on the composition of wine spirits. J Sci Food Agric 67:485–491

    Article  CAS  Google Scholar 

  184. Mateo J, Jimenez M, Huerta T, Pastor A (1991) Contribution of different yeasts isolated from musts of monastrell grapes to the aroma of wine. Int J Food Microbiol 14:153–160

    Article  CAS  Google Scholar 

  185. Rankine BC (1967) Influence of yeast strain and pH on pyruvic acid content of wines. J Sci Food Agric 18:41–44

    Article  CAS  Google Scholar 

  186. Rankine BC, Pocock KF (1969) Influence of yeast strain on binding of sulphur dioxide in wines, and on its formation during fermentation. J Sci Food Agric 20:104–109

    Article  CAS  Google Scholar 

  187. Romano P, Fiore C, Paraggio M, Caruso M, Carece A (2003) Function of yeast species and strains in wine flavour. Int J Food Microbiol 86:169–180

    Article  CAS  Google Scholar 

  188. Vila I, Sablayrolles JM, Gerland C, Baumes R, Bayonove C, Barre P (2000) Comparison of “aromatic” and “neutral” yeast strains: influence of vinification conditions. Wein-Wiss 55:59–66

    Google Scholar 

  189. Jiranek V, Langridge P, Henschke PA (1991) Yeast nitrogen demand: selection criterion for wine yeasts for fermenting low nitrogen musts. In: Rantz JM (ed) Proceedings of the international symposium on nitrogen in grapes wine. ASEV, Seattle, Washington, DC, pp 266–269

    Google Scholar 

  190. Taillandier P, Portugala FR, Fuster A, Strehaiano P (2007) Effect of ammonium concentration on alcoholic fermentation kinetics by wine yeasts for high sugar content. Food Microbiol 24:95–100

    Article  CAS  Google Scholar 

  191. Beltran G, Esteve-Zarzoso B, Rozes N, Mas A, Guillamon JM (2005) Influence of the timing of nitrogen additions during synthetic grape must fermentations on fermentation kinetics and nitrogen consumption. J Agric Food Chem 53:996–1002

    Article  CAS  Google Scholar 

  192. Bosso A (1996) Influenza dell`aggiunta di dosi crescenti di azoto ammoniacale ai mosti sulla composizione in sostanze volatili di origine fermentativa e sulle principali caratteristiche olfattive di alcuni vini bianchi. Rivista Viticultura Enologia 3:3–28

    Google Scholar 

  193. Guitart A, Hernandez Orte P, Ferreira V, Pena C, Cacho J (1999) Some observations about the correlation between the amino acid content of musts and wines of the Chardonnay variety and their fermentation aromas. Am J Enol Vitic 50:253–258

    CAS  Google Scholar 

  194. Hernandez-Orte P, Bely M, Cacho J, Ferreira V (2006) Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media Aust. J Grape Wine Res 12:150–160

    Article  CAS  Google Scholar 

  195. Nicolini G, Mocchiutti R, Larcher R, Moser S (2000) Lieviti ed aromi dei vini: comparazione tra ceppi commerciali di larga diffusione. L´Enotecnico 36:75–85

    Google Scholar 

  196. Nicolini G, Volonterio G, Larcher R, Moser S, Dalla Serra A (2000) Prestazioni fermmentative ed aromatiche di lieviti sudafricani di recente immissioe in Italia. L´Enotecnico 36:87–94

    Google Scholar 

  197. Carrau FM, Medina K, Boido E et al (2005) De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiol Lett 243:107–115

    Article  CAS  Google Scholar 

  198. Vilanova M, Ugliano M, Varela C, Siebert T, Pretorius IS, Henschke PA (2007) Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl Microbiol Biotechnol 77:145–157

    Article  CAS  Google Scholar 

  199. Buzzini P, Martini A, Cappelli F, Pagnoni UM, Davoli P (2003) A study on volatile organic compounds (VOCs) produced by tropical ascomycetous yeasts. Ant van Leeuwen 84:301–311

    Article  CAS  Google Scholar 

  200. Backhus LE, DeRisi J, Brown P, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1:111–125

    Article  CAS  Google Scholar 

  201. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol 38:947–995

    Google Scholar 

  202. Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioengin 108:1883–1892

    Article  CAS  Google Scholar 

  203. Swiegers JH, Capone DL, Pardon KH, Elsey GM, Sefton MA, Francis IL, Pretorius IS (2007) Engineering volatile thiol release in Saccharomyces cerevisiae for improved wine aroma. Yeast 24:561–574

    Article  CAS  Google Scholar 

  204. Sarma SJ, Verma M, Brar SK (2013) Industrial fermentation for production of alcoholic beverages. In: Soccol CR, Pandey A, Larroche C. Fermentation processes engineering in the Food industry. CRC Press, Boca Raton, FL, pp 299–322

    Google Scholar 

  205. Dufour M, Zimmer A, Thibon C, Marullo P (2013) Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Appl Microbiol Biotechnol 97:5893–5905

    Article  CAS  Google Scholar 

  206. Bellon JR, Schmid F, Capone DL, Dunn BL, Chambers PJ (2013) Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae. PLoS One 8:e62053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Carrau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Carrau, F., Boido, E., Dellacassa, E. (2015). Yeast Diversity and Flavor Compounds. In: Merillon, JM., Ramawat, K. (eds) Fungal Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-19456-1_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19456-1_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-19456-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Yeast Diversity and Flavor Compounds
    Published:
    20 April 2016

    DOI: https://doi.org/10.1007/978-3-319-19456-1_32-2

  2. Original

    Yeast Diversity and Flavor Compounds
    Published:
    08 February 2016

    DOI: https://doi.org/10.1007/978-3-319-19456-1_32-1