Skip to main content

Surface Structure of Sol–Gel-Derived Materials Using X-ray Photoelectron Spectroscopy (XPS)

  • Living reference work entry
  • First Online:
Handbook of Sol-Gel Science and Technology
  • 215 Accesses

Abstract

The sol–gel technique is frequently used to prepare materials where surface properties are of major importance. These might be films, powders, high-surface area catalyst supports, and catalysts themselves. A surface-specific technique is therefore essential to determine quality and reproducibility of surfaces and to correlate properties to chemistry and structure. X-ray photoelectron spectroscopy has become a routine technique for many workers in this field, and this chapter serves to inform the sol–gel community about the benefits and pitfalls of this structural and analytical tool. Areas of application are described with some examples from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Almeida RM, Vasconcelos HC, Goncalves MC, Santos LF. XPS and NEXAFS studies of rare-earth doped amorphous sol–gel films. J Non-Cryst Solids. 1998;232–4:65

    Article  Google Scholar 

  • Armelao L, Fabrizio M, Gross S, Martucci A, Tondello E. Molecularly interconnected SiO2-GeO2 thin films: sol–gel synthesis and characterization. J Mater Chem. 2000;10:1147.

    Article  Google Scholar 

  • Barath F, Turki M, Keller V, Maire G. Catalytic activity of reduced MoO3/alpha-Al2O3 for hexanes reforming I. Preparation, characterization, and X-ray photoelectron spectroscopy studies. J Catal. 1999;185:1.

    Google Scholar 

  • Beck C, Mallat T, Burgi T, Baiker A. Nature of active sites in sol–gel TiO2-SiO2 epoxidation catalysts. J Catal. 2001;204:428.

    Article  Google Scholar 

  • Brenier R, Mugnier J, Mirica E. XPS study of amorphous zirconium oxide films prepared by sol–gel. Appl Surf Sci. 1999;143:85.

    Article  Google Scholar 

  • Campostrini R, Ischia M, Carturan G, Gialanella S, Armelao L. Rh Inclusion in sol–gel SiO2. Effects of Rh precursors on metal dispersion and SiO2-Rh thermal behavior. J Sol–Gel Sci Technol. 2000;18:61.

    Google Scholar 

  • Campostrini R, Ischia M, Carturan G, Armelao L. Sol–gel synthesis and pyrolysis study of oxyfluoride silica gels. J Sol–Gel Sci Technol. 2002;23:107.

    Article  Google Scholar 

  • Davydov L, Reddy EP, France P, Smirniotis PG. Transition-metal-substituted titania-loaded MCM-41 as photocatalysts for the degradation of aqueous organics in visible light. J Catal. 2001;203:157.

    Article  Google Scholar 

  • Diaz G, Perez-Hernandez R, Gomez-Cortes A, Benaissa M, Mariscal R, Fierro JLG. CuO–SiO2 sol–gel catalysts: characterization and catalytic properties for NO reduction. J Catal. 1999;187:1.

    Article  Google Scholar 

  • Frost DC, McDowell CA, Woolsey IS. Evidence for multiplet splitting of 2p photoelectron lines of transition-metal complexes. Chem Phys Lett. 1972;17:320.

    Article  Google Scholar 

  • Galan-Fereres M, Alemany LJ, Mariscal R, Banares MA, Anderson JA, Fierro JLG. Surface-acidity and properties of titania-silica catalysts. Chem Mater. 1995;7:1342.

    Article  Google Scholar 

  • Gee IA. X-ray photoelectron spectroscopy studies of oxide based glass systems. PhD thesis, Warwick; 2000.

    Google Scholar 

  • Hunt CP, Anthony MT, Stoddart CTH, Seah MP. NPL Chem. Report 108; 1980.

    Google Scholar 

  • Kim JG, Pugmire DL, Battaglia D, Langell MA. Analysis of the NiCo2O4 spinel surface with auger and X-ray photoelectron spectroscopy. Appl Surf Sci. 2000;165:70.

    Article  Google Scholar 

  • Mitome J, Aceves E, Ozkan US. Role of lanthanide elements on the catalytic behavior of supported Pd catalysts in the reduction of NO with methane. Catal Today. 1999;53:597.

    Article  Google Scholar 

  • Nasser SA. X-ray photoelectron spectroscopy study on the composition and structure of BaTiO3 thin films deposited on silicon. Appl Surf Sci. 2000;157:14.

    Article  Google Scholar 

  • Noh J, Yang OB, Kim DH, Woo SI. Characteristics of the Pd-only three-way catalysts prepared by sol–gel method. Catal Today. 1999;53:575.

    Article  Google Scholar 

  • Pecchi G, Reyes P, Concha I, Fierro JLG. Methane combustion on Pd/SiO2 sol gel catalysts. J. Catal. 1998;179:309.

    Article  Google Scholar 

  • Pouilloux Y, Autin F, Barrault J. Selective hydrogenation of methyl oleate into unsaturated alcohols: relationships between catalytic properties and composition of cobalt–tin catalysts. Catal Today. 2000;63:87.

    Article  Google Scholar 

  • Schroeder WD, Fontenot CJ, Schrader GL. 1,3-Butadiene selective oxidation over VMoO catalysts: new insights into the reaction pathway. J Catal. 2001;203:382.

    Article  Google Scholar 

  • Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interface Anal. 1979;1:2.

    Article  Google Scholar 

  • Shirley DA. High-resolution x-ray photoemission spectrum of valence bands of gold. Phys Rev B. 1972;5:4709.

    Article  Google Scholar 

  • Siegbahn K, Nordling CN, Fahlman A, Nordberg R, Hamrin K, Hedman J, Johanssen G, Bergmark T, Karlsson SE, Lindgren I, Lindberg B. ESCA; atomic, molecular and solid state structure studied by means of electron spectroscopy. Uppsala: Almquist and Wiksells; 1967.

    Google Scholar 

  • Stakheev AY, Shpiro ES, Apijok J. XPS and XAES study of Tio2-SiO2 mixed-oxide system. J Phys Chem. 1993;97:202.

    Article  Google Scholar 

  • Then AM, Pantano CG. Formation and behavior of surface-layers on electron-emission glasses. J Non-Cryst Solids. 1990;120:178.

    Article  Google Scholar 

  • Traversa E, Di Vona ML, Nunziante P, Licoccia S, Yoon JW, Sasaki T, Koshizaki N. Photoelectrochemical properties of sol–gel processed Ag-TiO2 nanocomposite thin films. J. Sol–gel Sci Technol. 2001;22:115.

    Article  Google Scholar 

  • Wagner CD. Auger parameter in electron-spectroscopy for identification of chemical species. Anal Chem. 1975a;47:1201

    Article  Google Scholar 

  • Wagner CD. Chemical-shifts of auger lines, and auger parameter. Farad Discuss Chem Soc. 1975b;60:291.

    Article  Google Scholar 

  • Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA. Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J Vac Sci Technol. 1982;21:933.

    Article  Google Scholar 

  • Wannaparhun S, Seal S, Desai V. Surface chemistry of Nextel-720, alumina and Nextel-720/alumina ceramic matrix composite (CMC) using XPS–A tool for nano-spectroscopy. Appl Surf Sci. 2002;185:183.

    Article  Google Scholar 

  • Wilson K, Lee AF, Macquarrie DJ, Clark JH. Structure and reactivity of sol–gel sulphonic acid silicas. Appl Catal A Gen. 2002;228:127.

    Article  Google Scholar 

  • Woodbridge CM, Gu XJ, Langell MA. Extra-atomic relaxation energies and auger parameters of titanium compounds. Surf Interface Anal. 1999;27:936.

    Article  Google Scholar 

  • Yeh JJ, Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1 ⩽ Z ⩽ 103. At Nucl Data Tables. 1985;32:1.

    Article  Google Scholar 

  • Yu JG, Yu JC, Cheng B, Zhao XJ. Photocatalytic activity and characterization of the sol–gel derived Pb-doped TiO2 thin films. J Sol–Gel Sci Technol. 2002;24:39.

    Article  Google Scholar 

  • Zhang YH, Xiong GX, Sheng SS, Yang WS. Deactivation studies over NiO/g-Al2O3 catalysts for partial oxidation of methane to syngas. Catal Today. 2000;63:517.

    Article  Google Scholar 

Recommended Reading and Data Handbooks

  • Briggs D, Seah MP. Practical surface analysis: Auger and X-ray photoelectron spectroscopy. New York: Wiley; 1990.

    Google Scholar 

  • Hochella MF. Chapter 13: Auger electron and X-ray photoelectron spectroscopies: in Reviews in mineralogy 18:. In: FCM H, editor. Spectroscopic methods in mineralogy and geology. 18 Washington, DC: Mineralogical Society of America; 1988.

    Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomber KD. Photoelectron spectroscopy. Standard spectra for identification and interpretation of XPS data. In: Chastain J, editor. Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation; 1992.

    Google Scholar 

Download references

Acknowledgments

The author wishes to thank the Engineering and Sciences Research Council of the UK for providing access to the Scienta spectrometer in the RUSTI facility at Daresbury Laboratory, Warrington, UK. The invaluable help from Dr. Danny D-S Law and Dr. Graham Beamson of that facility is also much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Holland, D. (2017). Surface Structure of Sol–Gel-Derived Materials Using X-ray Photoelectron Spectroscopy (XPS). In: Klein, L., Aparicio, M., Jitianu, A. (eds) Handbook of Sol-Gel Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-19454-7_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19454-7_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19454-7

  • Online ISBN: 978-3-319-19454-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics