Skip to main content

Fracture Mechanics at Atomic Scales

  • Chapter
  • First Online:
From Creep Damage Mechanics to Homogenization Methods

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 64))

Abstract

Fracture and strength in atomic components are governed by mechanical instabilities at atomic scales associated with irreversible deformations through bond breaking/switching, such as cleavage, dislocation nucleation, and phase transformations of crystal lattices. It is therefore of central importance to determine the critical conditions where atomic structures becomes mechanically unstable. Here we review the state-of-the-art theory for “fracture mechanics of atomic structures” that provides a rigorous description of mechanical instabilities in arbitrary atomic structures under any external loading/constraint. The theory gives the critical instability condition by positivity of the minimum eigenvalue of the Hessian matrix of the total energy with respect to degrees of freedom of the system (i.e., instability criterion), and it successfully provides atomistic insights into fracture in various atomic/nanoscale structures. The review also covers the recent development of theory extended to advanced systems including large-scale, finite temperature, and “multi-physics” instabilities in (ferro-)electric and magnetic materials as functional fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bažant ZP (2002) Concrete fracture models: testing and practice. Eng Frac Mech 69:165–205

    Article  Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  • Buehler MJ, Gao H (2006) Dynamical fracture instabilities due to local hyperelasticity at crack tips. Nature 439:307–310

    Article  Google Scholar 

  • Černý M, Šob M, Pokluda J, Šandra P (2004) Ab initio calculation of ideal tensile strength and mechanical stability in copper. J Phys Condens Matter 16:1045–1052

    Article  Google Scholar 

  • Dmitriev SV, Kitamura T, Li J, Umeno Y, Yashiro K, Yoshikawa N (2005a) Near-surface lattice instability in 2D fiber and half-space. Acta Mater Sci 53:1215–1224

    Article  Google Scholar 

  • Dmitriev SV, Li J, Yoshikawa N, Shibutani Y (2005b) Theoretical strength of 2D hexagonal crystals: application to bubble raft indentation. Philos Mag 85:2177–2195

    Article  Google Scholar 

  • Dombard AJ (2007) Planetary science crack under stress. Nature 447:276–277

    Article  Google Scholar 

  • Hill R, Milstein F (1997) Principles of stability analysis of ideal crystals. Phys Rev B 15:3087–3096

    Article  Google Scholar 

  • Holland D, Marder M (1999) Crack and atoms. Adv Mater 11:793–806

    Article  Google Scholar 

  • Kermode JR, Albaret T, Sherman D, Bernstein N, Gumbsch P, Payne MC, Csányi G, de Vita A (2008) Low-speed fracture instabilities in a brittle crystal. Nature 455:1224–1227

    Article  Google Scholar 

  • Kitamura T, Yashiro K, Ohtani R (1997) Atomic simulation on deformation and fracture of nano-single crystal of nickel in tension. JSME Int J Ser A 40:430–435

    Article  Google Scholar 

  • Kitamura T, Umeno Y, Fushino R (2004a) Instability criterion of inhomogeneous atomic system. Mater Sci Eng A 379:229–233

    Article  Google Scholar 

  • Kitamura T, Umeno Y, Tsuji N (2004b) Analytical evaluation of unstable deformation criterion of atomic structure and its application to nanostructure. Comp Mater Sci 29:499–510

    Article  Google Scholar 

  • Kitamura T, Yashiro K, Ohtani R (1998) Mesoscopic dynamics of fracture. Computational materials design. Springer, Berlin, pp 120–130

    Google Scholar 

  • Kubo A, Albina JM, Umeno Y (2013) Atomistic study of stress-induced switch-ing of 90\(^\circ \) ferroelectric domain walls in PbTiO3: size, temperature and structural effect. Model Simul Mater Sci Eng 21(065):019

    Google Scholar 

  • Li J, van Vliet KJ, Zhu T, Yip S, Suresh S (2002) Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418:307–310

    Article  Google Scholar 

  • Li J, Ngan AHW, Gumbsch P (2003) Atomic modeling of mechanical behavior. Acta Mater 51:5711–5742

    Article  Google Scholar 

  • Liebowitz H (1968) Fracture—an advanced treatise. Academic Press, New York

    Google Scholar 

  • Livne A, Bouchbinder E, Svetlizky I, Fineberg J (2010) The near-tip fields of fast cracks. Science 327:1359–1363

    Article  MATH  MathSciNet  Google Scholar 

  • Luo W, Roundy D, Cohen ML, Morris JW (2002) Ideal strength of bcc molybdenum and niobium. Phys Rev B 66(094):110

    Google Scholar 

  • Milstein F (1971) Theoretical strength of a perfect crystal. Phys Rev B 3:1130–1141

    Article  Google Scholar 

  • Milstein F (1980) Theoretical elastic behaviour of crystals at large strains. J Mater Sci 15:1071–1084

    Article  Google Scholar 

  • Nalla RK, Kinney JH, Richie RO (2003) Mechanistic fracture criteria for the failure of human cortical bone. Nat Mater 2:164–168

    Article  Google Scholar 

  • Pons AJ, Karma A (2010) Helical crack front instability in mixed-mode fracture. Nature 464:85–89

    Article  Google Scholar 

  • Rubin AM (1995) Propagation of magma-field cracks. Annu Rev Earth Planet Sci 23:287–336

    Article  Google Scholar 

  • Shimada T, Okawa S, Minami S, Kitamura T (2008) Development of efficient instability analysis method for atomic structures using linear elements and its application to amorphous metal (in Japanese). Trans Jpn Soc Mech Eng A 74:1328–1335

    Article  Google Scholar 

  • Shimada T, Okawa S, Minami S, Kitamura T (2009a) Development of efficient instability analysis method for atomic structures using linear elements and its application to amorphous metal. J Solid Mech Mater Eng 3(5):807–818

    Article  Google Scholar 

  • Shimada T, Okawa S, Minami S, Kitamura T (2009b) Simplified evaluation of mechanical instability in large-scale atomic structures. Mater Sci Eng A 513–514:166–171

    Article  Google Scholar 

  • Shimada T, Kondo T, Sumigawa T, Kitamura T (2010a) Mechanical instability criterion of dislocation structures based on discrete dislocation dynamics. Trans Jpn Soc Mech Eng A 76:1721–1728

    Google Scholar 

  • Shimada T, Okawa S, Kitamura T (2010b) Simplified analysis of mechanical in-stability three-dimensional atomic components and its application to nanoscale crack. J Solid Mech Mater Eng 4(7):1071–1082

    Article  Google Scholar 

  • Shimada T, Sakamoto H, Kitamura T (2012) Development of multi-physics in-stability criterion for atomic structures and application to domain switching in ferroelectrics under external electric field. J Soc Mater Sci 61:155–161

    Article  Google Scholar 

  • Shimada T, Kitamura T (2014) Multi-physics properties in ferroelectric nanostructure. Bull JSME 1(2):SMM0009-SMM0009

    Google Scholar 

  • Shimada T, Ouchi K, Ikeda I, Ishii Y, Kitamura T (2015) Magnetic instability criterion for spin-lattice systems. Comp Mater Sci 97:216–221

    Google Scholar 

  • Song J, Curtin WA (2013) Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater 12:145–151

    Article  Google Scholar 

  • Umeno Y, Kitamura T, Tagawa M (2007) Mechanical instability in non-uniform atomic structure: application to amorphous metal. Mater Sci Eng A 462:450–455

    Article  Google Scholar 

  • Umeno Y, Shimada T, Kitamura T (2009) Instability mode analysis of dislocation nucleation from notch based on atomistic model (instability activation mechanism under finite temperature). Trans Jpn Soc Mech Eng A 75:1247–1254

    Google Scholar 

  • Umeno Y, Shimada T, Kitamura T (2010) Dislocation nucleation in a thin Cu film from molecular dynamics simulations: instability activation by thermal fluctuations. Phys Rev B 82(104):108

    Google Scholar 

  • van Vliet KJ, Li J, Zhu T, Yip S, Suresh S (2003) Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys Rev B 67(104):105

    Google Scholar 

  • Wang J, Yip S, Phillpot SR, Wolf D (1993) Crystal instabilities at finite strain. Phys Rev Lett 71:4182–4185

    Article  Google Scholar 

  • Wang J, Li J, Yip S, Wolf D, Phillpot SR (1997) Unifying two criteria of born: elastic instability and melting of homogeneous crystals. Physica A 240:396–403

    Article  Google Scholar 

  • Wang J, Li J, Yip S, Phillpot SR, Wolf D (1995) Mechanical instabilities of homogeneous crystals. Phys Rev B 52:12,627–12,635

    Google Scholar 

  • Warner DH, Curtin WA, Qu S (2007) Rate dependence of crack-tip processes predicts twinning trend in f.c.c. metals. Nat Mater 6:876–881

    Article  Google Scholar 

  • Yan Y, Kondo T, Shimada T, Sumigawa T, Kitamura T (2012) Criterion of mechanical instabilities for dislocation structures. Mater Sci Eng A 534:681–687

    Article  Google Scholar 

  • Yashiro K, Tomita Y (2010) Local lattice instability at a dislocation nucleation and motion. J Phys IV 11:Pr5-3-Pr5-10

    Google Scholar 

  • Zhang P, Ma L, Fan F, Zeng Z, Peng C, Loya PE, Liu Z, Gong Y, Zhang J, Zhang X, Ajayan PM, Zhu T, Lou J (2014) Fracture toughness of graphene. Nat Commun 5:3782

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support of this work by the Grant-in-Aid for Specially Promoted Research (Grant No. 25000012) from the Japan Society of Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Shimada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shimada, T., Kitamura, T. (2015). Fracture Mechanics at Atomic Scales. In: Altenbach, H., Matsuda, T., Okumura, D. (eds) From Creep Damage Mechanics to Homogenization Methods. Advanced Structured Materials, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-19440-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19440-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19439-4

  • Online ISBN: 978-3-319-19440-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics