Skip to main content

Photon-Atom Coupling with Parabolic Mirrors

  • Chapter
  • First Online:
Engineering the Atom-Photon Interaction

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

Efficient coupling of light to single atomic systems has gained considerable attention over the past decades. This development is driven by the continuous growth of quantum technologies. The efficient coupling of light and matter is an enabling technology for quantum information processing and quantum communication. And indeed, in recent years much progress has been made in this direction. But applications aside, the interaction of photons and atoms is a fundamental physics problem. There are various possibilities for making this interaction more efficient, among them the apparently ‘natural’ attempt of mode-matching the light field to the free-space emission pattern of the atomic system of interest. Here we will describe the necessary steps of implementing this mode-matching with the ultimate aim of reaching unit coupling efficiency. We describe the use of deep parabolic mirrors as the central optical element of a free-space coupling scheme, covering the preparation of suitable modes of the field incident onto these mirrors as well as the location of an atom at the mirror’s focus. Furthermore, we establish a robust method for determining the efficiency of the photon-atom coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is no state of the light field, more intense than a single photon, which will transform into a single photon state when projecting onto a certain mode function. Such a projection is equivalent to attenuation.

  2. 2.

    If not explicitly mentioned otherwise, the term atom is used to designate any kind of single quantum target.

  3. 3.

    We consciously neglect effects related to a nonzero detuning between the incident field and the atomic resonance.

  4. 4.

    The half solid angle case corresponds to \(h/f=1\).

  5. 5.

    This is of course also true for other focusing optics or dipole configurations and correspondingly other suitable ‘standard’ field modes as e.g. a fundamental Gaussian mode, see [24] for some examples.

  6. 6.

    The Strehl ratio defines the maximum intensity in the focal region for a focusing system exhibiting aberrations as a fraction of the intensity obtained without aberrations [48]. Whereas in the latter reference a plane wave is considered, we apply this figure of merit for the case of a doughnut mode.

  7. 7.

    The phase shift of the light scattered by an atom, i.e. the response of a driven harmonic oscillator, has been measured recently [52].

  8. 8.

    Values for the scattering ratio exceeding unity might seem unphysical at first sight because one might suspect a violation of energy conservation. Here we argue that this is not the case. Energy is always associated with the total field not with individual interfering components. One might write a propagating field as the sum of two fields \(E_1\) and \(E_2\), one 180\(^\circ \) out of phase with respect to the other. The total energy has of course a well defined value. But the individual fields \(E_{1,2}\) are not well defined. You can choose a field with a larger \(E_1\) as long as the amplitude of field \(E_2\) is also increased such that the sum is as before.

    In the specific problem of elastic scattering of a beam resonant with the atomic transition it can even be required that the scattered power has to be larger than the incident one. Due to the 180\(^\circ \) phase shift between the scattered and the transmitted incident light there would otherwise be a net loss of energy under efficient-coupling conditions, since in elastic scattering no energy is transferred onto the atom.

  9. 9.

    The decreasing components should of course be observable for any incident pulse with non-zero temporal overlap \(\eta _t\).

  10. 10.

    It can be shown in a fully quantum-mechanical calculation that an exponentially rising pulse with proper time-constant indeed leads to full excitation of the atom [66].

  11. 11.

    YbIII has been created by electron-impact ionization from a cloud of trapped YbII ions [67]. We recently accomplished the controlled photo-ionization from YbII to YbIII.

  12. 12.

    A similar technique employing electro-optic modulation is reported in [69]. In contrast to this, other authors directly modulate the waveform of a single photon upon receiving a trigger signal from a heralding photon, see [70], and the chapter by Chuu and Du. Last but not least, in a recent experiment single-photon Fock states with increasing exponential envelope have been achieved by manipulating a heralding photon with an asymmetric cavity prior to detection [71]. Both photons originated from a cascaded decay in a cold atomic ensemble.

  13. 13.

    This expression arises from the fact that the power scattered into the first diffraction order of the AOM is proportional to the sine of the acoustic power establishing the diffraction grating.

  14. 14.

    Similar efficiencies where obtained recently in experiments for microwave pulses [74, 75].

  15. 15.

    The cooling laser beam at 370  nm that enters through an auxiliary opening of the parabolic mirror (cf. Fig. 3.9) is blocked during the saturation measurements.

  16. 16.

    This reasoning assumes that the quantization axis is parallel to the optical axis of the parabola. But one can show that for any orientation of the quantization axis the same correction factor has to be applied when treating a \(S_{1/2}\rightarrow P_{1/2}\) transition.

References

  1. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, New York, 1995)

    Book  Google Scholar 

  2. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  3. M. Moskovits, Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985)

    Article  ADS  Google Scholar 

  4. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 97, 017402 (2006)

    Article  ADS  Google Scholar 

  5. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  ADS  Google Scholar 

  6. J.M. Raimond, M. Brune, S. Haroche, Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. H. Walther, B.T.H. Varcoe, B.-G. Englert, T. Becker, Cavity quantum electrodynamics. Rep. Prog. Phys. 69, 1325–1382 (2006)

    Article  ADS  Google Scholar 

  8. H.J. Kimble, Strong interactions of single atoms and photons in cavity qed. Phys. Scr. T76, 127–137 (1998)

    Article  ADS  Google Scholar 

  9. G. Rempe, Atoms in an optical cavity: quantum electrodynamics in confined space. Contemp. Phys. 34, 119–129 (1993)

    Article  ADS  Google Scholar 

  10. M. Sondermann et al., Design of a mode converter for efficient light-atom coupling in free space. Appl. Phys. B 89, 489–492 (2007)

    Article  ADS  Google Scholar 

  11. H. Specht et al., A single-atom quantum memory. Nature 473, 190–193 (2011)

    Google Scholar 

  12. S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012)

    Article  ADS  Google Scholar 

  13. C. Sames et al., Antiresonance phase shift in strongly coupled cavity qed. Phys. Rev. Lett. 112, 043601 (2014)

    Article  ADS  Google Scholar 

  14. T. Tiecke et al., Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014)

    Article  ADS  Google Scholar 

  15. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, G. Leuchs, Focusing light to a tighter spot. Opt. Comm. 179, 1–7 (2000)

    Article  ADS  Google Scholar 

  16. G. Leuchs, M. Sondermann, Time-reversal symmetry in optics. Phys. Scr. 85, 058101 (2012)

    Article  ADS  Google Scholar 

  17. G. Leuchs, M. Sondermann, Light matter interaction in free space. J. Mod. Opt. 60, 36–42 (2013)

    Article  ADS  Google Scholar 

  18. A. Silberfarb, I.H. Deutsch, Continuous measurement with traveling-wave probes. Phys. Rev. A 68, 013817 (2003)

    Article  ADS  Google Scholar 

  19. D. Pinotsi, A. Imamoglu, Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008)

    Article  ADS  Google Scholar 

  20. C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Photons and Atoms (John Wiley and Sons, New York, 1989)

    Google Scholar 

  21. I.M. Basset, Limit to concentration by focusing. J. Mod. Opt. 33, 279–286 (1986)

    Google Scholar 

  22. S.J. van Enk, Atoms, dipole waves, and strongly focused light beams. Phys. Rev. A 69, 043813 (2004)

    Article  ADS  Google Scholar 

  23. Y. Wang, J. Minář, L. Sheridan, V. Scarani, Efficient excitation of a two-level atom by a single photon in a propagating mode. Phys. Rev. A 83, 063842 (2011)

    Article  ADS  Google Scholar 

  24. M. Sondermann, N. Lindlein, G. Leuchs, Maximizing the electric field strength in the foci of high numerical aperture optics. Phys. Opt. (2008). arXiv:0811.2098

  25. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    MATH  Google Scholar 

  26. M. Fischer et al., Efficient saturation of an ion in free space. Appl. Phys. B 117, 797–801 (2014)

    Article  ADS  Google Scholar 

  27. N. Lindlein et al., A new 4\(\pi \)-geometry optimized for focusing onto an atom with a dipole-like radiation pattern. Laser Phys. 17, 927–934 (2007)

    Article  ADS  Google Scholar 

  28. A. Golla et al., Generation of a wave packet tailored to efficient free space excitation of a single atom. Eur. Phys. J. D 66, 190 (2012)

    Article  ADS  Google Scholar 

  29. S. Hell, E.H.K. Stelzer, Properties of a 4pi confocal fluorescence microscope. J. Opt. Soc. Am. A 9, 2159–2166 (1992)

    Article  ADS  Google Scholar 

  30. M.K. Tey et al., Strong interaction between light and a single trapped atom without the need for a cavity. Nat. Phys. 4, 924–927 (2008)

    Article  Google Scholar 

  31. N. Piro et al., Heralded single-photon absorption by a single atom. Nat. Phys. 7, 17–20 (2011)

    Article  Google Scholar 

  32. S.A. Aljunid et al., Excitation of a single atom with exponentially rising light pulses. Phys. Rev. Lett. 111, 103001 (2013)

    Article  ADS  Google Scholar 

  33. C.W. Gardiner, Inhibition of atomic phase decays by squeezed light: a direct effect of squeezing. Phys. Rev. Lett. 56, 1917–1920 (1986)

    Article  ADS  Google Scholar 

  34. N. Bokor, N. Davidson, 4\(\pi \) focusing with single paraboloid mirror. Opt. Commun. 281, 5499–5503 (2008)

    Article  ADS  Google Scholar 

  35. G. Leuchs et al., Interferometric null test of a deep parabolic reflector generating a Hertzian dipole field. Appl. Opt. 47, 5570–5584 (2008)

    Article  ADS  Google Scholar 

  36. R. Maiwald et al., Collecting more than half the fluorescence photons from a single ion. Phys. Rev. A 86, 043431 (2012)

    Article  ADS  Google Scholar 

  37. L. Slodička, G. Hétet, S. Gerber, M. Hennrich, R. Blatt, Electromagnetically induced transparency from a single atom in free space. Phys. Rev. Lett. 105, 153604 (2010)

    Article  ADS  Google Scholar 

  38. Z. Bomzon, G. Biener, V. Kleiner, E. Hasman, Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings. Opt. Lett. 27, 285–287 (2002)

    Article  ADS  Google Scholar 

  39. Z. Ghadyani et al., Concentric ring metal grating for generating radially polarized light. Appl. Opt. 50, 2451–2457 (2011)

    Article  ADS  Google Scholar 

  40. M. Stalder, M. Schadt, Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Opt. Lett. 21, 1948–1950 (1996)

    Article  ADS  Google Scholar 

  41. S. Tidwell, D. Ford, W. Kimura, Generating radially polarized beams interferometrically. Appl. Opt. 29, 2234–2239 (1990)

    Article  ADS  Google Scholar 

  42. S. Tidwell, G. Kim, W. Kimura, Efficient radially polarized laser beam generation with a double interferometer. Appl. Opt. 32, 5222–5229 (1993)

    Article  ADS  Google Scholar 

  43. R. Oron et al., The formation of laser beams with pure azimuthal or radial polarization. Appl. Phys. Lett. 77, 3322–3324 (2000)

    Article  ADS  Google Scholar 

  44. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, Tailoring of arbitrary optical vector beams. New J. Phys. 9, 78 (2007)

    Article  ADS  Google Scholar 

  45. J. Lin, P. Genevet, M.A. Kats, N. Antoniou, F. Capasso, Nanostructured holograms for broadband manipulation of vector beams. Nano Lett. 13, 4269–4274 (2013)

    Article  Google Scholar 

  46. R. Dorn, S. Quabis, G. Leuchs, Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003)

    Article  ADS  Google Scholar 

  47. S. Quabis, R. Dorn, G. Leuchs, Generation of a radially polarized doughnut mode of high quality. Appl. Phys. B 81, 597–600 (2005)

    Article  ADS  Google Scholar 

  48. M. Born, E. Wolf, Principles of Optics, 6th edn. (Pergamon Press, Oxford, 1991)

    Google Scholar 

  49. S.A. Aljunid et al., Phase shift of a weak coherent beam induced by a single atom. Phys. Rev. Lett. 103, 153601 (2009)

    Article  ADS  Google Scholar 

  50. M. Pototschnig et al., Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011)

    Article  ADS  Google Scholar 

  51. G. Hétet, L. Slodička, N. Röck, R. Blatt, Free-space read-out and control of single-ion dispersion using quantum interference. Phys. Rev. A 88, 041804 (2013)

    Article  ADS  Google Scholar 

  52. A. Jechow et al., Controllable optical phase shift over one radian from a single isolated atom. Phys. Rev. Lett. 110, 113605 (2013)

    Article  ADS  Google Scholar 

  53. G. Zumofen, N.M. Mojarad, V. Sandoghdar, M. Agio, Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008)

    Article  ADS  Google Scholar 

  54. M.K. Tey et al., Interfacing light and single atoms with a lens. New J. Phys. 11, 043011 (2009)

    Article  ADS  Google Scholar 

  55. T. Tyc, Gouy phase for full-aperture spherical and cylindrical waves. Opt. Lett. 37, 924–926 (2012)

    Article  ADS  Google Scholar 

  56. M. Sondermann, G. Leuchs, The phase shift induced by a single atom in free space. J. Europ. Opt. Soc. Rap. Public. 8, 13502 (2013)

    Article  Google Scholar 

  57. A.N. Vamivakas et al., Strong extinction of a far-field laser beam by a single quantum dot. Nano Lett. 7, 2892–2896 (2007)

    Article  ADS  Google Scholar 

  58. G. Wrigge, I. Gerhardt, J. Hwang, G. Zumofen, V. Sandoghdar, Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008)

    Article  Google Scholar 

  59. S.A. Aljunid et al., Interaction of light with a single atom in the strong focusing regime. J. Mod. Opt. 58, 299–305 (2011)

    Article  ADS  MATH  Google Scholar 

  60. Y.L.A. Rezus et al., Single-photon spectroscopy of a single molecule. Phys. Rev. Lett. 108, 093601 (2012)

    Article  ADS  Google Scholar 

  61. P. Kochan, H.J. Carmichael, Photon-statistics dependence of single-atom absorption. Phys. Rev. A 50, 1700–1709 (1994)

    Article  ADS  Google Scholar 

  62. G. Hétet, L. Slodička, M. Hennrich, R. Blatt, Single atom as a mirror of an optical cavity. Phys. Rev. Lett. 107, 133002 (2011)

    Article  ADS  Google Scholar 

  63. M. Sondermann, G. Leuchs, Scattering of an exponential pulse by a single atom. Rom. Rep. Phys. 65, 638–645 (2013)

    Google Scholar 

  64. Y. Yamamoto, H.A. Haus, Preparation, measurement and information capacity of optical quantum states. Rev. Mod. Phys. 58, 1001–1020 (1986)

    Article  ADS  Google Scholar 

  65. A.L. Gaeta, R.W. Boyd, Quantum noise in phase conjugation. Phys. Rev. Lett. 60, 2618–2621 (1988)

    Article  ADS  Google Scholar 

  66. M. Stobinska, G. Alber, G. Leuchs, Perfect excitation of a matter qubit by a single photon in free space. EPL 86, 14007 (2009)

    Article  ADS  Google Scholar 

  67. M.M. Schauer et al., Isotope-selective trapping of doubly charged yb ions. Phys. Rev. A 82, 062518 (2010)

    Article  ADS  Google Scholar 

  68. M. Förtsch et al., A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818 (2013)

    Article  Google Scholar 

  69. H.L. Dao, S.A. Aljunid, G. Maslennikov, C. Kurtsiefer, Preparation of an exponentially rising optical pulse for efficient excitation of single atoms in free space. Rev. Sci. Instrum. 83, 083104 (2012)

    Article  ADS  Google Scholar 

  70. P. Kolchin, C. Belthangady, S. Du, G.Y. Yin, S.E. Harris, Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008)

    Article  ADS  Google Scholar 

  71. B. Srivathsan, G.K. Gulati, A. Cerè, B. Chng, C. Kurtsiefer, Reversing the temporal envelope of a heralded single photon using a cavity. Phys. Rev. Lett. 113, 163601 (2014)

    Article  ADS  Google Scholar 

  72. S. Heugel, A.S. Villar, M. Sondermann, U. Peschel, G. Leuchs, On the analogy between a single atom and an optical resonator. Laser Phys. 20, 100–106 (2010)

    Article  ADS  Google Scholar 

  73. M. Bader, S. Heugel, A.L. Chekhov, M. Sondermann, G. Leuchs, Efficient coupling to an optical resonator by exploiting time-reversal symmetry. New J. Phys. 15, 123008 (2013)

    Article  ADS  Google Scholar 

  74. T. Palomaki, J. Harlow, J. Teufel, R. Simmonds, K. Lehnert, Coherent state transfer between itinerant microwave fields and a mechanical oscillator. Nature 495, 210–214 (2013)

    Article  ADS  MATH  Google Scholar 

  75. J. Wenner et al., Catching time-reversed microwave coherent state photons with 99.4% absorption efficiency. Phys. Rev. Lett. 112, 210501 (2014)

    Article  ADS  Google Scholar 

  76. C. Liu et al., Efficiently loading a single photon into a single-sided fabry-perot cavity. Phys. Rev. Lett. 113, 133601 (2014)

    Article  ADS  Google Scholar 

  77. R. Maiwald et al., Stylus ion trap for enhanced access and sensing. Nat. Phys. 5, 551–554 (2009)

    Article  Google Scholar 

  78. A.S. Bell et al., Laser cooling of trapped ytterbium ions using a four-level optical excitation scheme. Phys. Rev. A 44, 20–23 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the contributions of Marianne Bader, Benoit Chalopin, Martin Fischer, Andrea Golla, Simon Heugel and Robert Maiwald to our experimental endeavours. We thank the Deutsche Forschungsgemeinschaft for financial support. G.L. also acknowledges financial support from the European Research Council under the Advanced Grant ‘PACART’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Sondermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sondermann, M., Leuchs, G. (2015). Photon-Atom Coupling with Parabolic Mirrors. In: Predojević, A., Mitchell, M. (eds) Engineering the Atom-Photon Interaction. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-19231-4_3

Download citation

Publish with us

Policies and ethics