Skip to main content

A Highly Efficient Single Photon-Single Quantum Dot Interface

  • Chapter
  • First Online:
Engineering the Atom-Photon Interaction

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

Semiconductor quantum dots are a promising system to build a solid state quantum network. A critical step in this area is to build an efficient interface between a stationary quantum bit and a flying one. In this chapter, we show how cavity quantum electrodynamics allows us to efficiently interface a single quantum dot with a propagating electromagnetic field. Beyond the well known Purcell factor, we discuss the various parameters that need to be optimized to build such an interface. We then review our recent progresses in terms of fabrication of bright sources of indistinguishable single photons, where a record brightness of 79 % is obtained as well as a high degree of indistinguishability of the emitted photons. Symmetrically, optical nonlinearities at the very few photon level are demonstrated, by sending few photon pulses at a quantum dot-cavity device operating in the strong coupling regime. Perspectives and future challenges are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that our cavity damping rate \(\kappa \) is an intensity damping rate, whereas other references define \(\kappa \) as a field damping rate: there is a factor 2 difference between these two possible definitions.

  2. 2.

    The Purcell Factor is usually defined as the ratio between the emission rate in the cavity mode, \(\Gamma \), and the emission rate for a quantum dot in bulk GaAs, \(\gamma _{bulk}\), but in a micropillar device \(\gamma _{sp}\) is usually equal to \(\gamma _{bulk}\).

References

  1. J.Y. Marzin, J.M. Gérard, A. Izraël, D. Barrier, G. Bastard, Photoluminescence of single inas quantum dots obtained by self-organized growth on GaAs. Phys. Rev. Lett. 73, 716–719 (1994). http://dx.doi.org/10.1103/PhysRevLett.73.716

  2. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, Hidden symmetries in the energy levels of excitonic /‘artificial atoms/’. Nature 405, 923–926 (2000). http://dx.doi.org/10.1038/35016020

  3. P. Michler et al., A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000). http://dx.doi.org/10.1126/science.290.5500.2282

  4. N. Akopian et al., Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 8, 130501 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.130501

  5. R.J. Young et al., Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006). http://dx.doi.org/10.1088/1367-2630/8/2/029

  6. S. Strauf et al., High-frequency single-photon source with polarization control. Nat. Photonics 1, 704–708 (2007). http://dx.doi.org/10.1038/nphoton.2007.227

  7. D.J.P. Ellis et al., Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz. New J. Phys. 10, 043035 (2008). http://stacks.iop.org/1367-2630/10/i=4/a=043035

  8. C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, Y. Yamamoto, Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002). http://dx.doi.org/10.1038/nature01086

  9. S. Ates et al., Post-selected indistinguishable photons from the resonance fluorescence of a single quantum dot in a microcavity. Phys. Rev. Lett. 103, 167402 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.167402

  10. R.M. Stevenson et al., Indistinguishable entangled photons generated by a light-emitting diode. Phys. Rev. Lett. 108, 040503 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.040503

  11. M. Muller, S. Bounouar, K.D. Jons, M. Glassl, P. Michler, On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 224–228 (2014). http://dx.doi.org/10.1038/nphoton.2013.377

  12. Y.-M. He et al., On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nano. 8, 213–217 (2013). http://dx.doi.org/10.1038/nnano.2012.262

  13. O. Gazzano et al., Bright solid-state sources of indistinguishable single photons. Nat. Commun. 4, 1425 (2013). http://dx.doi.org/10.1038/ncomms2434

  14. V. Loo et al., Optical nonlinearity for few-photon pulses on a quantum dot-pillar cavity device. Phys. Rev. Lett. 109, 166806 (2012). http://dx.doi.org/10.1103/PhysRevLett.109.166806

  15. R. Bose, D. Sridharan, H. Kim, G.S. Solomon, E. Waks, Low-photon-number optical switching with a single quantum dot coupled to a photonic crystal cavity. Phys. Rev. Lett. 108, 227402 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.227402

  16. A. Reinhard et al., Strongly correlated photons on a chip. Nat. Photonics 6, 93–96 (2011). http://dx.doi.org/10.1038/nphoton.2011.321

  17. H. Kim, R. Bose, T.C. Shen, G.S. Solomon, E. Waks, A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics 7, 373–377 (2013). http://dx.doi.org/10.1038/nphoton.2013.48

  18. S. Laurent, et al., Electrical control of hole spin relaxation in charge tunable InAs/GaAs quantum dots. Phys. Rev. Lett. 94, 147401 (2005). http://dx.doi.org/10.1103/PhysRevLett.94.147401

  19. A. Greilich et al., Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341–345 (2006). http://dx.doi.org/10.1126/science.1128215

  20. X. Xu et al., Coherent population trapping of an electron spin in a single negatively charged quantum dot. Nat. Phys. 4, 692–695 (2008). http://dx.doi.org/10.1038/nphys1054

  21. A.J. Ramsay et al., Fast optical preparation, control, and readout of a single quantum dot spin. Phys. Rev. Lett. 100, 197401 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.197401

  22. B.D. Gerardot et al., Optical pumping of a single hole spin in a quantum dot. Nature 451, 441–444 (2008). http://dx.doi.org/10.1038/nature06472

  23. K. De Greve et al., Ultrafast coherent control and suppressed nuclear feedback of a single quantum dot hole qubit. Nat. Phys. 7, 872–878 (2011). http://dx.doi.org/10.1038/nphys2078

  24. D. Brunner et al., A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009). http://dx.doi.org/10.1126/science.1173684

  25. D. Press et al., Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367–370 (2010). http://dx.doi.org/10.1038/nphoton.2010.83

  26. D. Press, T.D. Ladd, B. Zhang, Y. Yamamoto, Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008). http://dx.doi.org/10.1038/nature07530

  27. W.B. Gao, P. Fallahi, E. Togan, J. Miguel-Sanchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430 (2012). http://dx.doi.org/10.1038/nature11573

  28. K. De Greve et al., Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature 491, 421–425 (2012). http://dx.doi.org/10.1038/nature11577

  29. J. Claudon et al., A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photonics 4, 174–177 (2010). http://dx.doi.org/10.1038/nphoton.2009.287

  30. M.E. Reimer et al., Bright single-photon sources in bottom-up tailored nanowires. Nat. Commun. 3, 1266 (2012). http://dx.doi.org/10.1038/ncomms1746

  31. M. Munsch et al., Dielectric gaas antenna ensuring an efficient broadband coupling between an inas quantum dot and a gaussian optical beam. Phys. Rev. Lett. 110, 177402 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.177402

  32. A. Laucht et al., A waveguide-coupled on-chip single-photon source. Phys. Rev. X 2, 011014 (2012). http://dx.doi.org/10.1103/PhysRevX.2.011014

  33. I. Yeo et al., Surface effects in a semiconductor photonic nanowire and spectral stability of an embedded single quantum dot. Appl. Phys. Lett. 99, 233106 (2011). http://dx.doi.org/dx.doi.org/10.1063/1.3665629

  34. S. Varoutsis et al., Restoration of photon indistinguishability in the emission of a semiconductor quantum dot. Phys. Rev. B 72, 041303 (2005). http://dx.doi.org/10.1103/PhysRevB.72.041303

  35. A. Dousse et al., Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010). http://dx.doi.org/10.1038/nature09148

  36. A. Dousse et al., A quantum dot based bright source of entangled photon pairs operating at 53 k. Appl. Phys. Lett. 97, 081104 (2010). http://dx.doi.org/dx.doi.org/10.1063/1.3475487

  37. J.M. Gérard et al., Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.1110

  38. T. Yoshie et al., Vacuum rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004)

    Article  ADS  Google Scholar 

  39. J.P. Reithmaier et al., Strong coupling in a single quantum dot?semiconductor microcavity system. Nature 432, 197–200 (2004)

    Article  ADS  Google Scholar 

  40. E. Peter et al., Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.067401

  41. J.-M. Gerard, B. Gayral, Strong purcell effect for inas quantum boxes in three-dimensional solid-state microcavities. J. Lightwave Technol. 17, 2089 (1999). http://www.jlt.osa.org/abstract.cfm?URI=jlt-17-11-2089

  42. A. Dousse et al., Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography. Phys. Rev. Lett 101, 267404 (2008). http://dx.doi.org/10.1103/PhysRevLett.101.267404

  43. L.C. Andreani, G. Panzarini, J.-M. Gérard, Strong-coupling regime for quantum boxes in pillar microcavities: theory. Phys. Rev. B 60, 13276–13279 (1999). http://dx.doi.org/10.1103/PhysRevB.60.13276

  44. A. Auffèves-Garnier, C. Simon, J.-M. Gérard, J.-P. Poizat, Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the purcell regime. Phys. Rev. A 75, 053823 (2007). http://dx.doi.org/10.1103/PhysRevA.75.053823

  45. A. Badolato et al., Deterministic coupling of single quantum dots to single nanocavity modes. Science 308, 1158–1161 (2005). http://dx.doi.org/10.1126/science.1109815

  46. P. Gallo et al., Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008). http://dx.doi.org/dx.doi.org/10.1063/1.2952278

  47. D. Dalacu et al., Deterministic emitter-cavity coupling using a single-site controlled quantum dot. Phys. Rev. B 82, 033301 (2010). http://dx.doi.org/10.1103/PhysRevB.82.033301

  48. Q.A. Turchette, R.J. Thompson, H.J. Kimble, One-dimensional atoms. Appl. Phys. B 60, S1–S10 (1995). http://www.springerlink.com/content/t007u7mx5663042v/

  49. V. Loo et al., Quantum dot-cavity strong-coupling regime measured through coherent reflection spectroscopy in a very high-q micropillar. Appl. Phys. Lett. 97, 241110 (2010). http://dx.doi.org/10.1063/1.3527930

  50. C. Arnold et al., Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200,000. Appl. Phys. Lett. 100, 111111 (2012). http://dx.doi.org/10.1063/1.3694026

  51. X.-C. Yao et al., Observation of eight-photon entanglement. Nat. Photonics 6, 225–228 (2012). http://dx.doi.org/10.1038/nphoton.2011.354

  52. J. Bleuse et al., Inhibition, enhancement, and control of spontaneous emission in photonic nanowires. Phys. Rev. Lett. 106, 103601 (2011). http://dx.doi.org/10.1103/PhysRevLett.106.103601

  53. O. Gazzano et al., Evidence for confined tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys. Rev. Lett. 107, 247402 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.247402

  54. M. Lermer et al., Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments. Phys. Rev. Lett. 108, 057402 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.057402

  55. E. Peter et al., Fast radiative quantum dots: from single to multiple photon emission. Appl. Phys. Lett. 90, 223118 (2007). http://dx.doi.org/dx.doi.org/10.1063/1.2744475

  56. M. Kaniber et al., Investigation of the nonresonant dot-cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303 (2008). http://dx.doi.org/10.1103/PhysRevB.77.161303

  57. J. Suffczyński et al., Origin of the optical emission within the cavity mode of coupled quantum dot-cavity systems. Phys. Rev. Lett. 103, 027401 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.027401

  58. M. Winger et al., Explanation of photon correlations in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009). http://dx.doi.org/10.1103/PhysRevLett.103.207403

  59. S. Strauf et al., Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127404 (2006). http://dx.doi.org/10.1103/PhysRevLett.96.127404

  60. V. Giesz et al., Influence of the purcell effect on the purity of bright single photon sources. Appl. Phys. Lett. 103, 33113 (2013). http://dx.doi.org/dx.doi.org/10.1063/1.4813902

  61. L. Besombes, K. Kheng, L. Marsal, H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission. Phys. Rev. B 63, 155307 (2001). http://dx.doi.org/10.1103/PhysRevB.63.155307

  62. I. Favero et al., Acoustic phonon sidebands in the emission line of single inas/gaas quantum dots. Phys. Rev. B 68, 233301 (2003). http://dx.doi.org/10.1103/PhysRevB.68.233301

  63. E. Peter et al., Phonon sidebands in exciton and biexciton emission from single gaas quantum dots. Phys. Rev. B 69, 041307 (2004). http://dx.doi.org/10.1103/PhysRevB.69.041307

  64. A. Berthelot et al., Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot. Nat. Phys. 2, 759–764 (2006). http://dx.doi.org/10.1038/nphys433

  65. J. Hours, P. Senellart, E. Peter, A. Cavanna, J. Bloch, Exciton radiative lifetime controlled by the lateral confinement energy in a single quantum dot. Phys. Rev. B 71, 161306 (2005). http://dx.doi.org/10.1103/PhysRevB.71.161306

  66. A.J. Bennett et al., Electric-field-induced coherent coupling of the exciton states in a single quantum dot. Nat. Phys. 6, 947–950 (2010). http://dx.doi.org/10.1038/nphys1780

  67. R.B. Patel, A.J. Bennett, J. Anthony, I. Farrer, C.A. Nicoll, D.A. Ritchie, A.J. Shields, Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photonics 4, 632–635 (2010). http://dx.doi.org/10.1038/nphoton.2010.161

  68. T. Heindel et al., Electrically driven quantum dot-micropillar single photon source with 34. Appl. Phys. Lett. 96, 011107 (2010). http://dx.doi.org/10.1063/1.3284514

  69. A.K. Nowak et al., Deterministic and electrically tunable bright single-photon source. Nat. Commun. 5, 3240 (2014). http://dx.doi.org/10.1038/ncomms4240

  70. O. Gazzano et al., Entangling quantum-logic gate operated with an ultrabright semiconductor single-photon source. Phys. Rev. Lett. 110, 250501 (2013). http://dx.doi.org/10.1103/PhysRevLett.110.250501

  71. J.L. O’Brien, G.J. Pryde, A.G. White, T.C. Ralph, D. Branning, Demonstration of an all-optical quantum controlled-not gate. Nature 426, 264–267 (2010). http://dx.doi.org/10.1038/nature02054

  72. A.G. White et al., Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007). http://dx.doi.org/10.1364/JOSAB.24.000172

  73. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Measurement of qubits. Phys. Rev. A 64, 052312 (2001). http://dx.doi.org/10.1103/PhysRevA.64.052312

  74. K.M. Birnbaum et al., Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005). http://dx.doi.org/doi:10.1038/nature03804

  75. D.E. Chang, A.S. Sorensen, E.A. Demler, M.D.A. Lukin, Single-photon transistor using nanoscale surface plasmons. Nat. Phys. 3, 807–812 (2007). http://dx.doi.org/10.1038/nphys708

  76. D. Englund et al., Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007). http://dx.doi.org/10.1038/nature06234

  77. D. Englund et al., Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012). http://dx.doi.org/10.1103/PhysRevLett.108.093604

  78. T. Volz et al., Ultrafast all-optical switching by single photons. Nat. Photonics 6, 607–611 (2012)

    Article  ADS  Google Scholar 

  79. K. Srinivasan, O. Painter, Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007). http://dx.doi.org/10.1103/PhysRevA.75.023814

  80. K. Srinivasan, C.P. Michael, R. Perahia, O. Painter, Investigations of a coherently driven semiconductor optical cavity qed system. Phys. Rev. A 78, 033839 (2008). http://dx.doi.org/10.1103/PhysRevA.78.033839

  81. S. Rosenblum, S. Parkins, B. Dayan, Photon routing in cavity qed: beyond the fundamental limit of photon blockade. Phys. Rev. A 84, 033854 (2011). http://dx.doi.org/10.1103/PhysRevA.84.033854

  82. C. Arnold et al., Cavity-enhanced real-time monitoring of single-charge jumps at the microsecond time scale. Phys. Rev. X 4, 021004 (2014). http://dx.doi.org/10.1103/PhysRevX.4.021004

  83. A.V. Kuhlmann et al., Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013). http://dx.doi.org/10.1038/nphys2688

  84. E.B. Flagg et al., Interference of single photons from two separate semiconductor quantum dots. Phys. Rev. Lett. 104, 137401 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.137401

  85. W. Gao et al., Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4 (2013). doi:10.1038/ncomms3744; http://dx.doi.org/10.1038/ncomms3744

  86. J. Berezovsky et al., Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916–1920 (2006). http://dx.doi.org/10.1126/science.1133862

  87. M. Atature, J. Dreiser, A. Badolato, A. Imamoglu, Observation of faraday rotation from a single confined spin. Nat. Phys. 3, 101–106 (2007). http://dx.doi.org/10.1038/nphys521

  88. C.Y. Hu, W.J. Munro, J.G. Rarity, Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008). http://dx.doi.org/10.1103/PhysRevB.78.125318

  89. C. Bonato et al., CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett 104, 160503 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.160503

  90. M.N. Leuenberger, Fault-tolerant quantum computing with coded spins using the conditional faraday rotation in quantum dots. Phys. Rev. B 73, 075312 (2006). http://dx.doi.org/10.1103/PhysRevB.73.075312

  91. D. Valente et al., Frequency cavity pulling induced by a single semiconductor quantum dot. Phys. Rev. B 89, 041302 (2014). http://dx.doi.org/10.1103/PhysRevB.89.041302

Download references

Acknowledgments

The authors acknowledge their coworkers who have made all these results possible: Aristide Lemaitre, Isabelle Sagnes, Paul Voisin, Olivier Krebs, Adrien Dousse, Olivier Gazzano, Jan Suffczynski, Steffen Michaelis de Vasconcellos, Anna Nowak, Simone Luca Portalupi, Valérian Giesz, Niccolo Somaschi, Chirstophe Arnold, Vivien Loo, Justin Demory, Marcelo de Almeida, Andrew White and Alexia Auffeves. This work was partially supported by the French ANR DELIGHT, ANR MIND, ANR CAFE, ANR QDOM, the ERC starting grant 277885 QD-CQED, the CHISTERA project SSQN, the French Labex NANOSACLAY, and the RENATECH network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Senellart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lanco, L., Senellart, P. (2015). A Highly Efficient Single Photon-Single Quantum Dot Interface. In: Predojević, A., Mitchell, M. (eds) Engineering the Atom-Photon Interaction. Nano-Optics and Nanophotonics. Springer, Cham. https://doi.org/10.1007/978-3-319-19231-4_2

Download citation

Publish with us

Policies and ethics