Skip to main content

Thyroid Embryogenesis

  • Chapter
Thyroid Diseases in Childhood
  • 957 Accesses

Abstract

The thyroid gland is mainly composed of highly specialized epithelial cells, known as thyroid follicular cells, assembled in a peculiar histological organization characterized by the presence of follicles. In this chapter, we summarize what is known of the processes regulating the differentiation of thyroid cells and the morphogenesis of the gland. The use of animal models has made it possible to identify genes and mechanisms involved in normal thyroid development and are giving insights to elucidate the molecular pathology of thyroid dysgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Felice M, Di Lauro R (2011) Intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 152:163–175

    Article  Google Scholar 

  2. O’Rahilly R (1983) The timing and sequence of events in the development of the human endocrine system during the embryonic period proper. Anat Embryol 166:439–451

    Article  PubMed  Google Scholar 

  3. Polak M, Sura-Trueba S, Chauty A et al (2004) Molecular mechanisms of thyroid dysgenesis. Horm Res 62:14–21

    Article  CAS  PubMed  Google Scholar 

  4. Opitz R, Antonica F, Costagliola S (2013) New model systems to illuminate thyroid organogenesis. Part I: an update on the zebrafish toolbox. Eur Thyroid J 2:229–242

    Article  PubMed Central  PubMed  Google Scholar 

  5. De Felice M, Di Lauro R (2004) Thyroid development and its disorders: genetics and molecular mechanisms. Endocr Rev 25:722–746

    Article  PubMed  Google Scholar 

  6. Weller G (1933) Development of the thyroid, parathyroid and thymus glands in man. Contrib Embryol 24:93–140

    Google Scholar 

  7. Sgalitzer K (1941) Contribution to the study of the morphogenesis of the thyroid gland. J Anat 75:389–405

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Fisher DA, Dussault JH, Sach J et al (1977) Ontogenesis of hypothalamic-pituitary-thyroid function and metabolism in man, sheep and rat. Recent Prog Hormone Res 33:59–116

    Google Scholar 

  9. Szinnai G, Lacroix L, Carré A et al (2007) Sodium/iodide symporter (NIS) gene expression is the limiting step for the onset of thyroid function in the human fetus. J Clin Endocrinol Metab 92:70–76

    Article  CAS  PubMed  Google Scholar 

  10. Patel J, Landers K, Li H et al (2011) Thyroid hormones and fetal neurological development. J Endocrinol 209:1–8

    Article  CAS  PubMed  Google Scholar 

  11. Parlato R, Rosica A, Rodriguez-Mallon A et al (2004) An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 276:464–475

    Article  CAS  PubMed  Google Scholar 

  12. Alt B, Reibe S, Feitosa NM et al (2006) Analysis of origin and growth of the thyroid gland in zebrafish. Dev Dyn 235:1872–1883

    Article  PubMed  Google Scholar 

  13. Fagman H, Andersson L, Nilsson M (2006) The developing mouse thyroid: embryonic vessel contacts and parenchymal growth pattern during specification, budding, migration, and lobulation. Dev Dyn 235:444–445

    Article  CAS  PubMed  Google Scholar 

  14. Wendl T, Adzic D, Schoenebeck JJ et al (2007) Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals. Development 134:2871–2879

    Article  CAS  PubMed  Google Scholar 

  15. Olivieri A, Stazi MA, Mastroiacovo P et al (2002) A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991–1998). J Clin Endocrinol Metab 87:557–562

    CAS  PubMed  Google Scholar 

  16. Fagman H, Liao J, Westerlund J et al (2007) The 22q11 deletion syndrome candidate gene Tbx1 determines thyroid size and positioning. Hum Mol Genet 16:276–285

    Article  CAS  PubMed  Google Scholar 

  17. Donà E, Barry JD, Valentin G et al (2013) Directional tissue migration through a self-generated chemokine gradient. Nature 503:285–289

    PubMed  Google Scholar 

  18. De Felice M, Ovitt C, Biffali E et al (1998) A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat Genet 19:395–398

    Article  PubMed  Google Scholar 

  19. Fagman H, Grande M, Gritli-Linde A et al (2004) Genetic deletion of sonic hedgehog causes hemiagenesis and ectopic development of the thyroid in mouse. Am J Pathol 164:1865–1872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Amendola E, De Luca P, Macchia PE et al (2005) A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146:5038–5047

    Article  CAS  PubMed  Google Scholar 

  21. Postiglione MP, Parlato R, Rodriguez-Mallon A et al (2002) Role of the thyroid-stimulating hormone receptor signaling in development and differentiation of the thyroid gland. Proc Natl Acad Sci U S A 99:15462–15467

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. De Felice M, Postiglione MP, Di Lauro R (2004) Minireview: thyrotropin receptor signaling in development and differentiation of the thyroid gland: insights from mouse models and human diseases. Endocrinology 145:4062–4067

    Article  PubMed  Google Scholar 

  23. Hick AC, Delmarcelle AS, Bouquet M et al (2013) Reciprocal epithelial: endothelial paracrine interactions during thyroid development govern follicular organization and C-cells differentiation. Dev Biol 381:227–240

    Article  CAS  PubMed  Google Scholar 

  24. Westerlund J, Andersson L, Carlsson T et al (2008) Expression of Islet1 in thyroid development related to budding, migration, and fusion of primordia. Dev Dyn 237:3820–3829

    Article  CAS  PubMed  Google Scholar 

  25. Carre A, Rachdi L, Tron E et al (2011) Hes1 is required for appropriate morphogenesis and differentiation during mouse thyroid gland development. PLoS One 6, e16752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Kusakabe T, Hoshi N, Kimura S (2006) Origin of the ultimobranchial body cyst: T/ebp/Nkx2.1 expression is required for development and fusion of the ultimobranchial body to the thyroid. Dev Dyn 235:1300–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Manley NR, Capecchi M (1995) The role of Hoxa-3 in mouse thymus and thyroid development. Development 121:1989–2003

    CAS  PubMed  Google Scholar 

  28. Lazzaro D, Price M, De Felice M et al (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the foetal brain. Development 113:1093–1104

    CAS  PubMed  Google Scholar 

  29. Trueba SS, Auge J, Mattei G et al (2004) PAX8, TITF1 and FOXE1 gene expression patterns during human development: new insights into human thyroid development and thyroid dysgenesis associated malformations. J Clin Endocrinol Metab 90:455–462

    Article  PubMed  Google Scholar 

  30. Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10:60–69

    Article  CAS  PubMed  Google Scholar 

  31. Kusakabe T, Kawaguchi A, Hoshi N et al (2006) Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol Endocrinol 20:1796–1809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Plachov D, Chowdhury K, Walther C et al (1990) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110:643–651

    CAS  PubMed  Google Scholar 

  33. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90

    Article  CAS  PubMed  Google Scholar 

  34. Zannini M, Avantaggiato V, Biffali E et al (1997) TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J 16:3185–3197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Dathan N, Parlato R, Rosica A et al (2002) Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn 224:450–456

    Article  CAS  PubMed  Google Scholar 

  36. Thomas PQ, Brown A, Beddington R (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–95

    CAS  PubMed  Google Scholar 

  37. Martinez Barbera JP, Clements M, Thomas P et al (2000) The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127:2433–2445

    CAS  PubMed  Google Scholar 

  38. Fagman H, Amendola E, Parrillo L et al (2011) Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol 359:163–175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Biben C, Hatzistavrou T, Harvey RP (1998) Expression of NK-2 class homeobox gene Nkx2-6 in foregut endoderm and heart. Mech Dev 73:125–127

    Article  CAS  PubMed  Google Scholar 

  40. Dentice M, Cordeddu V, Rosica A et al (2006) Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 91:1428–1433

    Article  CAS  PubMed  Google Scholar 

  41. Revest JM, Spencer-Dene B, Kerr K et al (2001) Fibroblast growth factor receptor 2-IIIb acts upstream of Shh and Fgf4 and is required for limb bud maintenance but not for the induction of Fgf8, Fgf10, Msx1, or Bmp4. Dev Biol 231:47–62

    Article  CAS  PubMed  Google Scholar 

  42. Manley NR, Capecchi M (1998) Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol 195:1–15

    Article  CAS  PubMed  Google Scholar 

  43. Antonica F, Kasprzyk DF, Opitz R et al (2012) Generation of functional thyroid from embryonic stem cells. Nature 491:66–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Missero C, Cobellis G, De Felice M, Di Lauro R (1998) Molecular events involved in differentiation of thyroid follicular cells. Mol Cell Endocrinol 140:37–43

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Di Lauro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Felice, M., Di Lauro, R. (2015). Thyroid Embryogenesis. In: Bona, G., De Luca, F., Monzani, A. (eds) Thyroid Diseases in Childhood. Springer, Cham. https://doi.org/10.1007/978-3-319-19213-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19213-0_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19212-3

  • Online ISBN: 978-3-319-19213-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics