Skip to main content

The Role of Microbial Activity in Sulfide Oxidation at Dumping Sites of Sulfidic Wastes and in Abandoned Mining Areas

  • Chapter
Environmental Microbial Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 45))

Abstract

The role of iron-oxidizing bacteria in the natural systems such as dumping sites of sulfidic waste from extractive industries or abandoned mines still raises controversies, also from the regulatory point of view. High variability of mining waste rock properties and climatic conditions, along with a dump construction, causes instability and variability of hydrogeochemical and thermal conditions in the dump, thus affecting microbial activity and consequently differentiating it within the dump. The overall pollution load and ARD generation are a resultant of hydrogeochemical and microbiological processes. Therefore, the potentially decisive role of microbial activity in the kinetics of sulfide decomposition at some dumps requires differentiated assessment of chemical and microbial processes. In this context, some issues of importance have been discussed; among them are (1) the mechanisms of sulfide oxidation processes (the thiosulfate and polysulfide pathways) and their microbial acceleration, (2) microbiology of sulfidic waste and ARD, and (3) the need of coupling factors determining the role and activity of microorganisms exemplified in successes and failures of coal desulfurization and in the results of studies on the role of microbiological processes of sulfide oxidation at sulfidic waste dumps. A correct waste- and site-specific evaluation of the role and share of microbiological processes in the generation of pollution load in ARD would allow for elaborating adequate pollution control strategies. This needs designing and conducting complex studies that link host rock and sulfide mineralogy, climatic conditions, hydrogeochemistry, water balance, water, gas, and heat transport within the dump with pure chemical and biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C, Kar RN, Mishra SK, Twardowska I, Sukla LB (1997) Microbial depyritization of Assam coal. Indian J Microbiol 37:21–24

    Google Scholar 

  • Acharya C, Rao GV, Twardowska I, Kar RN, Sukla LB (1999) Removal of sulfur from Assam coal by bacterial conditioning and froth flotation. J Chem Technol Biotechnol 74:945–948

    Article  CAS  Google Scholar 

  • Aller A, Martinez O, de Linaje J, Méndez R, Morán A (2001) Biodesulphurization of coal by microorganisms isolated from the coal itself. Fuel Process Tech 69:45–57

    Article  CAS  Google Scholar 

  • Amos RT, Blowes DW, Bailey BL, Sego DC, Smith L, Ritchie AIM (2015) Waste-rock hydrogeology and geochemistry. Appl Geochem 57:140–156

    Google Scholar 

  • Andrews GF, Dugan PR, Stevens CJ (1991) Combining physical and bacterial treatment for removing pyritic sulfur from coal. In: Dugan PR, Quigley DR, Attia YA (eds) Processing and utilization of high-sulfur coals IV. Elsevier, Amsterdam

    Google Scholar 

  • Andrews GF, Dugan PR, McIlwain ME, Stevens CJ (1992) Microbial desulfurization of coal. Idaho National Engineering Laboratory EG&G Idaho, Inc., Idaho Falls, EGG-2669, Prepared for the U.S. Department of Energy

    Google Scholar 

  • Appelo CAJ, Postma D (2007) Geochemistry, groundwater and pollution, 2nd edn. Balkema, Leiden, The Netherlands

    Google Scholar 

  • Auld RR, Myre M, Mykytczuk NCS, Leduc LG, Merritt TJS (2013) Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 93(2):108–115

    Article  CAS  PubMed  Google Scholar 

  • Baker BJ, Barnfeld JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • Belly RT, Brock TD (1974) Ecology of iron-oxidizing bacteria in pyritic materials associated with coal. J Bacteriol 117:726–732

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blowes DW, Lortie L, Gould WD, Jambor JL (1995) Microbiological, chemical and mineralogical characterization of the Kidd Creek mine tailings impoundment, Timmins area, Ontario. Geomicrobiol J 13:13–31

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Paktunc D, Gould WD, Johnson DB (2014) The geochemistry of acid mine drainage. In: Holland H, Turekian K (eds) Earth systems and environmental sciences. Environmental geochemistry. Treatise in geochemistry, vol 11, 2nd edn. Elsevier, Amsterdam, pp 131–190

    Google Scholar 

  • Bosecker K, Mengel-Jung G, Schippers A (2004) Geomicrobiological risk assessment of abandoned mining sites. In: Thezos M, Hatzikioseyian A, Remoundaki E (eds) Biohydrometallurgy: a sustainable technology in evolution, Part 1. University of Athens, Greece, pp 585–593

    Google Scholar 

  • Bozecki P (2013) Study on sediments formation in the area of brown coal extraction in Leknica region (Muzhakow belt). Ph.D. Dissertation, AGH University of Science and Technology Krakow, Poland (in Polish)

    Google Scholar 

  • CEN/TR 16363 (2012) Characterization of waste – kinetic testing for assessing acid generation potential of sulfidic waste from extractive industries. CEN – European Committee for Standardization, Brussels

    Google Scholar 

  • CEN/TR 16376 (2012) Characterization of waste - overall guidance document for characterization of waste from extractive industries. CEN – European Committee for Standardization, Brussels

    Google Scholar 

  • Chen LX, Li JT, Chen YT, Huang LN, Hua ZS, Hu M et al (2013) Shifts in microbial community composition and function in the acidification of a lead/zinc mine tailings. Environ Microbiol 15:2431–2444

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li J, Chen L, Hua J, Huang L, Liu J et al (2014) Biogeochemical processes governing natural pyrite oxidation and release of acid metalliferous drainage. Environ Sci Technol 48:5537–5545

    Article  CAS  PubMed  Google Scholar 

  • Colmer AR, Hinkle ME (1947) The role of microorganisms in acid mine drainage. A preliminary report. Science 106(2751):253–256

    Article  CAS  PubMed  Google Scholar 

  • Dastidar MG, Malik A, Roychoudhury PK (2000) Biodesulphurization of Indian (Assam) coal using Thiobacillus ferrooxidans (ATCC 13984). Energy Convers Manag 41:375–388

    Article  CAS  Google Scholar 

  • Dockrey JW (2010) Microbiology and geochemistry of neutral pH waste rock from the Antamina Mine, Peru. M.Sc Dissertation, University of British Columbia, Vancouver, Canada

    Google Scholar 

  • Dugan PR (1991) Bioprocessing of coals program at the Idaho National Engineering Laboratory. In: 3rd Symposium on biotechnology of coal and coal-derived substances, Saalzbau, Essen, Germany, 23–24 September 1991

    Google Scholar 

  • Dugan PR, Apel WA (1978) Microbial desulfurization of coal. In: Murr LE, Thorma EA, Brierley JA (eds) Metallurgical applications of bacterial leaching and related microbiological phenomena. Academic, New York

    Google Scholar 

  • EC (2006) Directive 2006/21/EC of the European Parliament and of the Council of 15 March 2006 on the management of waste from the extractive industries. OJ L 102 of 11.4.2006

    Google Scholar 

  • EC (2009) BAT Reference document on Best Available Techniques for the management of tailings and waste-rock in mining activities. http://eipph.jrc.ec.europa.eu/reference/BREF/mmr-_adopted_0109.pdf

  • Elberling B, Schippers A, Sand W (2000) Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. J Contam Hydrol 41:225–238

    Article  CAS  Google Scholar 

  • EN 15875 (2011) Characterization of waste – static test for determination of acid potential and neutralisation potential of sulfidic waste. CEN – European Committee for Standardization, Brussels

    Google Scholar 

  • Fomchenko N, Muravyov MI, Kondrat’eva TF (2010) Two-stage bacterial-chemical oxidation of refractory gold-bearing sulfidic concentrates. Hydrometallurgy 101:28–34

    Article  CAS  Google Scholar 

  • Garcia C, Ballester A, González F, Blázquez ML (2007) Microbial activity in weathering columns. J Hazard Mater 141:565–574

    Article  CAS  PubMed  Google Scholar 

  • Gonsalvesh L, Marinov SP, Stefanova M, Yürüm Y, Dumanli AG, Dinler-Doganay G, Kolankaya N, Sam M, Carleer R, Reggers G, Thijssen E, Yperman J (2008) Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal. Fuel 87:2533–2543

    Article  CAS  Google Scholar 

  • Gonsalvesh L, Marinov SP, Stefanova M, Carleer R, Yperman J (2012) Organic sulphur alterations in biodesulphurized low rank coals. Fuel 97:489–503

    Article  CAS  Google Scholar 

  • Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453

    Article  CAS  Google Scholar 

  • Harrison AP (1978) Microbial succession and mineral leaching in an artificial coal spoil. Appl Environ Microbiol 36(6):861–869

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hindar A, Nordstrom K (2014) Effects and quantification of acid runoff from sulfide-bearing rock deposited during construction of Highway E18, Norway. Appl Geochem. doi:10.1016/j.apgeochem.2014.06.016

  • Huang LN, Zhou WH, Hallberg KB, Wan CY, Li J, Shu W-S (2011) Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol 77:5540–5544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson DB (2014) Biomining – biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30:24–31

    Article  CAS  PubMed  Google Scholar 

  • Kazadi Mbamba C, Harrison STL, Franzidis J-P, Broadhurst JD (2012) Mitigating acid rock drainage risks while recovering low-sulfur coal from ultrafine colliery wastes using froth flotation. Miner Eng 29:13–21

    Article  CAS  Google Scholar 

  • Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530

    Article  CAS  Google Scholar 

  • Klein J, Beyer M, Afferden M, Hodek W, Pfeifer F, Seewald H, Wolff-Fishe E, Jungten H (1988) Coal in biotechnology. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6(16). VCH, Weinheim

    Google Scholar 

  • Kock D, Schippers A (2008) Quantitative microbial community analysis of three different sulfidic mine tailings dumps generating acid mine drainage. Hydrometallurgy 83:167–175

    Article  Google Scholar 

  • Korehi H, Blöthe M, Schippers A (2014) Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage. Res Microbiol 165:713–718

    Google Scholar 

  • Lau CM, Shumate KS, Smith EE (1970) The role of bacteria in pyrite oxidation kinetics, 114–119, in: Proc. 3rd Symposium on coal mine drainage research, Mellon Institute, Pittsburgh, Pennsylvania, 19–20 May 1970

    Google Scholar 

  • Le Roux NW (1969) Mining with microbes. New Sci 43(668):12–16

    Google Scholar 

  • Le Roux NW (1974) Mineral attack by microbiological processes. In: Miller JDA (ed) Microbial aspects of metallurgy. Medical and Technical Publishing, Aylesbury

    Google Scholar 

  • Lefebre R, Hockley D, Smolensky J, Gélinas P (2001) Multiphase transfer processes in waste rock piles producing acid mine drainage 1: Conceptual model and system characterization. J Contam Hydrol 52:137–164

    Article  Google Scholar 

  • Liu J, Hua ZS, Chen ZN, Kuang JL, Li SL, Shu WS et al (2014) Correlating microbial diversity patterns with geochemistry in an extreme and heterogeneous mine tailings environment. Appl Environ Microbiol 80:3677–3686

    Article  PubMed Central  PubMed  Google Scholar 

  • Lottermoser BG (2007) Mine wastes. Characterization, treatment, environmental impacts, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lundgren DG, Vestal JR, Tabita FR (1972) The microbiology of mine drainage pollution. In: Mitchel K (ed) Water pollution microbiology. Wiley, New York

    Google Scholar 

  • Malik A, Dastidar MG, Roychoudhury PK (2000) Biodesulphurization of coal: rate enhancement by sulphur-grown cells. Biotechnol Lett 22:273–276

    Article  CAS  Google Scholar 

  • Malik A, Dastidar MG, Roychoudhury PK (2001a) Biodesulphurization of coal; mechanism and rate limiting factors. J Environ Sci Health A Tox Hazard Subst Environ Eng 36(6):1113–1128

    Article  CAS  PubMed  Google Scholar 

  • Malik A, Dastidar MG, Roychoudhury PK (2001b) Biodesulphurization of coal: effect of pulse feeding and leachate recycle. Enzyme Microb Technol 28(1):49–56

    Article  CAS  PubMed  Google Scholar 

  • Morth AH, Smith EE, Shumate KS (1972). Pyritic systems. A mathematical model. Environmental Protection Agency. Report Number EPA-R2-72-002. Proj. Design 14019 EAH, Contract No. 14-12-589. Environmental Protection Technology Series

    Google Scholar 

  • Muravyov MI, Bulaev AG (2013) Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation. Miner Eng 45:108–114

    Article  CAS  Google Scholar 

  • Olson GJ (1994) Microbial oxidation of gold ores and gold bioleaching. FEMS Microbiol Lett 119(1–2):1–6

    Article  CAS  Google Scholar 

  • Olson GJ, Kelly RM (1988) Microbiological processing of coal. In: Bioprocessing of fossil fuels. CRC Press, Boca Raton, FL

    Google Scholar 

  • Olson GJ, Turbak SC, McFeters GA (1979) Impact of western coal mining. II. Microbiological studies. Water Res 13:1033–1041

    Article  CAS  Google Scholar 

  • Olson GJ, McFeters GA, Temple KL (1981) Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils. Microb Ecol 7:39–50

    Article  CAS  PubMed  Google Scholar 

  • Palmer ME (1978) Acidity and nutrient availability in colliery spoil. In: Goodman GT, Chadwick MJ (eds) Environmental management of mineral wastes. Sijthoff & Noordhoff, Alphen aan den Rijn, pp 85–126

    Chapter  Google Scholar 

  • Pinto PX, Al-Abed SR, Holder C, Reisman DJ (2014) Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions. J Environ Manage 140:135–144

    Article  CAS  PubMed  Google Scholar 

  • Rickard D (2012) Sulfidic sediments and sedimentary rocks. Developments in Sedimentology, vol 65. Elsevier, Amsterdam

    Google Scholar 

  • Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin SkMd (2014) Geochemical characterization of coal and waste rocks from a high sulfur bearing coalfield, India; Implication for acid and metal generation. J Geochem Explor 145:135–147

    Article  CAS  Google Scholar 

  • Sand W, Giehrke T, Hallman R, Schippers A (1995) Sulfur chemistry, biofilm, and the (in)direct attack mechanism – a critical evaluation of bacterial leaching. Appl Microbiol Biotechnol 43:961–966

    Article  CAS  Google Scholar 

  • Sand W, Giehrke T, Jozsa PG, Schippers A (2001) (Bio)chemistry of bacterial leaching – direct vs. indirect (bio)leaching. Hydrometallurgy 59:159–175

    Article  CAS  Google Scholar 

  • Sand W, Jozsa P-G, Kovacs Z-M, Săsăran N, Schippers A (2007) Long-term evaluation of acid rock drainage mitigation measures in large lysimeters. J Geochem Explor 92(2–3):205–211

    Article  CAS  Google Scholar 

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microbiol 65:319–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schippers A, Jozsa P, Sand W (1996) Sulfur chemistry in bacterial leaching of pyrite. Appl Environ Microbiol 62:3424–3431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schippers A, Rohwerder T, Sand W (1999) Intermediary sulfur compounds in pyrite oxidation: implications for bioleaching and biodepyritization of coal. Appl Microbiol Biotechnol 52:104–110

    Article  CAS  Google Scholar 

  • Schippers A, Jozsa P-G, Kovacs ZM, Jelea M, Sand W (2001) Large scale experiments for microbiological evaluation of measures for safeguarding sulfidic mine waste. Waste Manag 21:139–146

    Article  CAS  PubMed  Google Scholar 

  • Schippers A, Kock D, Schwartz M, Böttcher ME, Vogel H, Hagger M (2007) Geomicrobiological and geochemical investigation of a pyrrhotite-containing mine waste tailings dam near Selebi-Phikwe in Botswana. J Geochem Explor 92:151–158

    Article  CAS  Google Scholar 

  • Schippers A, Breuker A, Blazejak A, Bosecker K, Kock D, Wright TL (2010) The biogeochemistry and microbiology of sulfidic mine waste and bioleaching dumps and heaps, and novel Fe(II)-oxidizing bacteria. Hydrometallurgy 104:342–350

    Article  CAS  Google Scholar 

  • Silverman MP (1967) Mechanism of bacterial pyrite oxidation. J Bacteriol 94:1046–1051

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silverman MP, Ehrlich HL (1964) Microbial formation and degradation of minerals. Adv Appl Microbiol 6:153–206

    Article  CAS  Google Scholar 

  • Silverman MP, Lundgren DC (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans. J Bacteriol 77:642–647

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silverman MP, Rogoff MH, Wender I (1963) Removal of pyritic sulfur from coal by bacterial action. Fuel 15:113–124

    Google Scholar 

  • Sima M, Dold B, Frei L, Senila M, Balteanu D, Zobrist J (2011) Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. J Hazard Mater 189:624–639

    Article  CAS  PubMed  Google Scholar 

  • Simate GS, Ndlovu S (2014) Acid mine drainage. Challenges and opportunities. J Hazard Mater 2(3):1785–1803

    CAS  Google Scholar 

  • Singer PC (1970) Oxygenation of ferrous iron. Contract PH 36-66-107 for Federal Quality Administration. Harvard University, Cambridge, MA

    Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry, 3rd edn. Wiley, New York

    Google Scholar 

  • Szczepanska J, Twardowska I (1999) Distribution and environmental impact of coal mining wastes in Upper Silesia, Poland. Environ Geol 38(3):249–258

    Article  CAS  Google Scholar 

  • Szczepanska J, Twardowska I (2004) Mining waste. In: Twardowska I, Allen HE, Kettrup AAF, Lacy WJ (eds) Solid waste: assessment, monitoring and remediation, Waste Management Series 4(C). Elsevier, Amsterdam, pp 319–385

    Chapter  Google Scholar 

  • Tillet DM, Meyerson AS (1987) The removal of pyritic sulfur from coal employing Thiobacillus ferrooxidans in a packed column reactor. Biotechnol Bioeng 29(1):146–150

    Article  CAS  PubMed  Google Scholar 

  • Tripathy SS, Kar RN, Mishra SK, Twardowska I, Sukla LB (1998) Effect of chemical pretreatment on bacterial desulphurisation of Assam coal. Fuel 77:859–864

    Article  CAS  Google Scholar 

  • Twardowska I (1986) The role of Thiobacillus ferrooxidans in pyrite oxidation in colliery spoil tips. I Model investigations. Acta Microbiol Pol 35(3/4):291–304

    CAS  Google Scholar 

  • Twardowska I (1987) The role of Thiobacillus ferrooxidans in pyrite oxidation in colliery spoil tips. II Investigation of samples taken from spoil tips. Acta Microbiol Pol 36(1/2):101–107

    CAS  Google Scholar 

  • Twardowska I, Galimska R (1993) Microbiological desulfurization of pulverized coal from the Janina mine, USCB, Poland. Paper presented at the International symposium on the extraction and processing of hard coal of Poland and Czech Republic in the environmentally safe way. Ostrava, 17–18 May 1993

    Google Scholar 

  • Uhl W, Hone HJ, Beyer M, Klein J (1989) Continuous microbial desulfurization of coal. Biotechnol Bioeng 34:1341

    Article  CAS  PubMed  Google Scholar 

  • Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation – part A. Appl Microbiol Biotechnol 97:7529–7541

    Article  CAS  PubMed  Google Scholar 

  • Watling HR, Collinson DM, Li J, Mutch LA, Perrot FA, Rea SM, Reith F, Watkin ELJ (2014a) Bioleaching of a low-grade copper ore: linking leach chemistry and microbiology. Miner Eng 56:35–44

    Article  CAS  Google Scholar 

  • Watling HR, Collinson DM, Fjastad S, Kaksonen AH, Li J, Morris C, Perrot FA, Rea SM, Shiers DW (2014b) Column bioleaching of a polymetallic ore: effects of pH and temperature on metal extraction and microbial community structure. Miner Eng 58:90–99

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Twardowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Twardowska, I. (2015). The Role of Microbial Activity in Sulfide Oxidation at Dumping Sites of Sulfidic Wastes and in Abandoned Mining Areas. In: Sukla, L., Pradhan, N., Panda, S., Mishra, B. (eds) Environmental Microbial Biotechnology. Soil Biology, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-19018-1_1

Download citation

Publish with us

Policies and ethics