Skip to main content

Fundamentals of Machining

  • Chapter
Machining with Nanomaterials

Abstract

During chip formation there is a substantial increase in the specific energy as chip size is reduced during machining. It is believed this is due to the fact that all metals contain defects such as grain boundaries, missing and impurity atoms, and when the size of the material removed decreases the probability of encountering a stress-reducing defect decreases. Since the shear stress and strain in metal cutting is unusually high, discontinuous microcracks usually form on the primary shear plane. If the material is very brittle, or the compressive stress on the shear plane is relatively low, microcracks will grow into larger cracks giving rise to discontinuous chip formation. When discontinuous microcracks form on the shear plane they will weld and reform as strain proceeds, thus joining the transport of dislocations in accounting for the total slip of the shear plane. This chapter focuses on machining at the micro- and nanoscale and attempts to explain the dominant features of machining as the size effect becomes significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.R. Backer, E.R. Marshall, M.C. Shaw, Trans. ASME 74, 61 (1952)

    Google Scholar 

  2. N. Taniguchi, Precis. Eng. 16, 5–24 (1994)

    Article  Google Scholar 

  3. M.C. Shaw, J. Franklin Inst. 254(2), 109 (1952)

    Article  Google Scholar 

  4. R.O. Heidenreich, W. Shockley, Report on Strength of Solids. Phys. Soc. of London 57, (1948)

    Google Scholar 

  5. H.J. Ernst, M.E. Merchant, Trans. Am. Soc. Met. 29, 299 (1941)

    Google Scholar 

  6. M.E. Merchant, J. Appl. Phys. 16, 267–275 (1945)

    Article  Google Scholar 

  7. V. Piispanen, Teknillinen Aikak. (Finland) 27, 315 (1937)

    Google Scholar 

  8. M.E. Merchant, J. Appl. Phys. 16, 318–324 (1945)

    Article  Google Scholar 

  9. M.E. Merchant, Machining theory and practice. Am. Soc. Met. 9, 5–44 (1950)

    Google Scholar 

  10. C.S. Barrett, Structure of Metals (McGraw Hill, New York, 1943), p. 295

    Google Scholar 

  11. P.W. Bridgman, Studies in Large Plastic Flow and Fracture (McGraw Hill, New York, 1952)

    Google Scholar 

  12. G. Langford, M. Cohen, Trans. ASM 62, 623 (1969)

    Google Scholar 

  13. V. Piispanen, J. Appl. Phys. 19, 876 (1948)

    Article  Google Scholar 

  14. T.Z. Blazynski, J.M. Cole, Proc. Inst. Mech. Eng. 1(74), 757 (1960)

    Google Scholar 

  15. M.C. Shaw, J. Appl. Phys. 21, 599 (1950)

    Article  Google Scholar 

  16. T.J. Walker, PhD Dissertation, Carnegie-Mellon University, Pittsburgh, 1967

    Google Scholar 

  17. T.J. Walker, M.C. Shaw, Advances in Machine Tool Design and Research (Pergamon Press, Oxford, England, 1969), pp. 241–252

    Google Scholar 

  18. E. Usui, A. Gujral, M.C. Shaw, Int. J. Mach. Tools Res. 1, 187–197 (1960)

    Article  Google Scholar 

  19. A. Vyas, M.C. Shaw, Trans. ASME-J. Mech. Sci. 21(1), 63–72 (1999)

    Google Scholar 

  20. F. Eugene, Ann. CIRP 52(11), 13–17 (1952)

    Google Scholar 

  21. M.C. Shaw, Int. J. Mech. Sci. 22, 673–686 (1980)

    Article  Google Scholar 

  22. K.B. Kwon, D.W. Cho, S.J. Lee, C.N. Chu, Ann. CIRP 47(1), 43–46 (1999)

    Article  Google Scholar 

  23. H. Eyring, T. Ree, Proc. Nat. Acad. Sci. 47, 526–537 (1961)

    Article  Google Scholar 

  24. H. Eyring, M.S. Jhon, Significant Theory of Liquids (Wiley, New York, 1969)

    Google Scholar 

  25. D. Kececioglu, Trans. ASME 80, 149–168 (1958)

    Google Scholar 

  26. D. Kececioglu, Trans. ASME 80, 541–546 (1958)

    Google Scholar 

  27. D. Kececioglu, Trans. ASME J. Eng. Ind. 82, 79–86 (1960)

    Article  Google Scholar 

  28. T.L. Anderson, Fracture Mechanics (CRC Press, Boca Raton, 1991)

    Google Scholar 

  29. B. Zhang, A. Bagchi, Trans. ASME J. Eng. Ind. 116, 289 (1994)

    Article  Google Scholar 

  30. A.S. Argon, J. Im, R. Safoglu, Metall. Trans. 6A, 825 (1975)

    Article  Google Scholar 

  31. R. Komanduri, R.H. Brown, Met. Mater. 95, 308 (1967)

    Google Scholar 

  32. D.C. Drucker, J. Appl. Phys. 20, 1 (1949)

    Article  Google Scholar 

  33. N.A. Fleck, G.M. Muller, M.F. Ashby, J.M. Hutchinson, Acta Metall. Mater. 41(10), 2855 (1994)

    Google Scholar 

  34. N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y. Milman, V. Acta, Metall. Mater. 41(10), 2855 (1993)

    Article  Google Scholar 

  35. Q. Ma, D.R. Clarke, J. Mater. Res. 46(3), 477 (1995)

    Google Scholar 

  36. W.D. Nix, H. Gao, J. Mech. Phys. Solids 1(4), 853 (1998)

    Google Scholar 

  37. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids 47, 1239 (1999)

    Article  Google Scholar 

  38. D. Dinesh, S. Swaminathan, S. Chandrasekar, T.N. Farris, Proc ASME-IMECE, New York, pp. 1–8 (2001)

    Google Scholar 

  39. Committee on Technology National Science and Technology Council, National Nanotechnology initiative: Leading to the next industrial revolution, Washington DC (2000)

    Google Scholar 

  40. K. Snowdon, C. McNeil, J. Lakey, Nanotechnology for MEMS components. mstNews 3, 9–10 (2001)

    Google Scholar 

  41. A. EI-Fatatry, A. Correial, Nanotechnology in microsystems: potential influence for transmission systems and related applications. mstNews 3, 25–26 (2003)

    Google Scholar 

  42. M. Werner, T. Köhler, W. Grünwald, Nanotechnology for applications in microsystems. mstNews 3, 4–7 (2001)

    Google Scholar 

  43. H. El-Hofy, A. Khairy, T. Masuzawa, J. McGeough, Introduction, in Micromachining of Engineering Materials, ed. by J. McGeough (Marcel Dekker, New York, 2002)

    Google Scholar 

  44. R. Donaldson, C. Syn, J. Taylor, N. Ikawa, S. Shimada, Minimum thickness of cut in diamond turning of electroplated copper. UCRL-97606 (1987)

    Google Scholar 

  45. D.J. Stephenson, D. Veselovac, S. Manley, J. Corbett, Ultra-precision grinding of hard steels. Precis. Eng. 15, 336–345 (2001)

    Article  Google Scholar 

  46. O. Rübenach, Micro technology—applications and trends. Euspen online training lecture, http://www.euspen.org/training/lectures/course2free2view/02MicroTechApps/demolecture.asp. Accessed Jan 2015

  47. Diamond milling processes for the generation of complex optical mold inserts. http://www.lfm.uni-bremen.de/html/res/res001/res108.html. Accessed Jan 2015

  48. M. Weck, Ultraprecision machining of microcomponents. Machine Tools 113–122 (2000)

    Google Scholar 

  49. Andreas Schütze, Lutz-Günter John, Nano sensors and micro integration. mstNews 3, 43–45 (2003)

    Google Scholar 

  50. Ayman EI-Fatatry, Antonio Correial, Nanotechnology in Microsystems: potential influence for transmission systems and related applications. MST News 3, 25 (2003)

    Google Scholar 

  51. N. Ikawa, R. Donaldson, R. Komanduri, W. König, P.A. Mckeown, T. Moriwaki, I. Stowers, Ultraprecision metal cutting—the past, the present and the future. CIRP Ann. Manuf. Technol. 40(2), 587–594 (1991)

    Article  Google Scholar 

  52. M.C. Shaw, Principles of Abrasive Processing (Oxford University Press, New York, 1996)

    Google Scholar 

  53. R. Komanduri, Chandrasekaran, L. Raff, Effects of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219, 84–97 (1998)

    Article  Google Scholar 

  54. X. Luo, K. Cheng, X. Guo, R. Holt, An investigation on the mechanics of nanometric cutting and the development of its test-bed. Int. J. Prod. Res. 41(7), 1449–1465 (2003)

    Article  Google Scholar 

  55. T. Dow, E. Miller, K. Garrard, Tool force and deflection compensation for small milling tools. Precis. Eng. 28(1), 31–45 (2004)

    Article  Google Scholar 

  56. K. Cheng, X. Luo, R. Ward, R. Holt, Modelling and simulation of the tool wear in nanometric cutting. Wear 255, 1427–1432 (2003)

    Article  Google Scholar 

  57. S. Shimada, Molecular dynamics simulation of the atomic processes in microcutting, in Micromachining of Engineering Materials, ed. by J. McGeough (Marcel Dekker, New York, 2002), pp. 63–84

    Google Scholar 

  58. H. Nakazawa, Principles of Precision Engineering (Oxford University Press, New York, 1994)

    Google Scholar 

  59. W. Lee, C. Cheung, A dynamic surface topography model for the prediction of nano-surface generation in ultra-precision machining. Int. J. Mech. Sci. 43, 961–991 (2001)

    Article  Google Scholar 

  60. J. Corbett, Diamond Micromachining, in Micromachining of Engineering Materials, ed. by J. McGeough (Marcel Dekker, New York, 2002), pp. 125–146

    Google Scholar 

  61. W. Ahmed, M.J. Jackson, Emerging Nanotechnologies for Manufacturing. Micro and Nanotechnology Series, 2nd edn. (Elsevier, London, 2015). ISBN 978-0-323-28990-0

    Google Scholar 

  62. J.P. Davim, M.J. Jackson, Nano and Micromachining (ISTE-Wiley, London, 2009). ISBN 978-1848-211032

    Book  Google Scholar 

  63. M.J. Jackson, M.P. Hitchiner, High Performance Grinding and Advanced Cutting Tools (Springer Brief in Applied Sciences and Technology, New York, 2013). ISBN 978-1-4614-3115-2

    Book  Google Scholar 

  64. M.J. Jackson, Micro and Nanomanufacturing (Springer, New York, 2007). ISBN 978-0387-25874-4

    Google Scholar 

  65. N. Taniguchi, Nanotechnology (Oxford University Press, New York, 1996)

    Google Scholar 

Download references

Acknowledgements

The authors thank Springer and Wiley publishers for allowing the authors permission to reprint and update this chapter that was originally published in “Micro and Nanomachining” [64], originally published by Springer in 2007 (ISBN 978-0387-25874-4). Re-printed with kind permission from Springer Science+Business Media B.V. and Wiley Publishers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jackson, M.J. et al. (2015). Fundamentals of Machining. In: Jackson, M., Morrell, J. (eds) Machining with Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-19009-9_1

Download citation

Publish with us

Policies and ethics