Skip to main content

Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts

  • Conference paper
Modeling and Stochastic Learning for Forecasting in High Dimensions

Part of the book series: Lecture Notes in Statistics ((LNSP,volume 217))

Abstract

Short-term electricity forecasting has been studied for years at EDF and different forecasting models were developed from various fields of statistics or machine learning (functional data analysis, time series, non-parametric regression, boosting, bagging). We are interested in the forecasting of France’s daily electricity load consumption based on these different approaches. We investigate in this empirical study how to use them to improve prediction accuracy. First, we show how combining members of the original set of forecasts can lead to a significant improvement. Second, we explore how to build various and heterogeneous forecasts from these models and analyze how we can aggregate them to get even better predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aiolfi, M., Capistrán, C., & Timmermann, A. (2010). Forecast combinations (Working Papers 2010-04). Banco de México. http://EconPapers.repec.org/RePEc:bdm:wpaper:2010-04.

  2. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. (2012). Prévision d’un processus à valeurs fonctionnelles en présence de non stationnarités. Application à la consommation d’électricité. Journal de la Société Franaise de Statistique, 153(2), 52–78.

    MathSciNet  Google Scholar 

  3. Antoniadis, A., Brossat, X., Cugliari, J., & Poggi, J. (2013). Clustering functional data using wavelets. International Journal of Wavelets, Multiresolution and Information Processing, 11(1), 1–30.

    Article  MathSciNet  Google Scholar 

  4. Antoniadis, A., Paparoditis, E., & Sapatinas, T. (2006). A functional wavelet–kernel approach for time series prediction. Journal of the Royal Statistical Society: Series B, 68(5), 837–857.

    Article  MATH  MathSciNet  Google Scholar 

  5. Azoury, K. S., & Warmuth, M. K. (2001). Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43(3), 211–246.

    Article  MATH  Google Scholar 

  6. Biau, G., & Patra, B. (2011). Sequential quantile prediction of time series. IEEE Transactions on Information Theory, 57(3), 1664–1674.

    Article  MathSciNet  Google Scholar 

  7. Breiman, L. (1996). Bagging predictor. Machine Learning, 24(2), 123–140.

    MATH  MathSciNet  Google Scholar 

  8. Cesa-Bianchi, N., & Lugosi, G. (2003). Potential-based algorithms in on-line prediction and game theory. Machine Learning, 51(3), 239–261.

    Article  MATH  Google Scholar 

  9. Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction, learning, and games. Cambridge/ New York: Cambridge University Press.

    Book  MATH  Google Scholar 

  10. Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2013). Modeling and forecasting daily electricity load curves: A hybrid approach. Journal of the American Statistical Association, 108, 7–21.

    Article  MATH  MathSciNet  Google Scholar 

  11. Cho, H., Goude, Y., Brossat, X., & Yao, Q. (2014, to appear). Modeling and forecasting daily electricity load using curve linear regression. In Lecture notes in statistics 217: Modeling and stochastic learning for forecasting in high dimension, 35–52.

    Google Scholar 

  12. Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559–583.

    Article  Google Scholar 

  13. Devaine, M., Gaillard, P., Goude, Y., & Stoltz, G. (2013). Forecasting electricity consumption by aggregating specialized experts. Machine Learning, 90(2), 231–260.

    Article  MATH  MathSciNet  Google Scholar 

  14. Eban, E., Birnbaum, A., Shalev-Shwartz, S., & Globerson, A. (2012). Learning the experts for online sequence prediction. In Proceedings of ICML, Edinburgh.

    Google Scholar 

  15. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an applicationto boosting. Journal of Computer and System Sciences, 55, 119–139.

    Article  MATH  MathSciNet  Google Scholar 

  16. Gaillard, P., Goude, Y., & Stoltz, G. (2011). A further look at the forecasting of the electricity consumption by aggregation of specialized experts (Technical report). pierre.gaillard.me/doc/GaGoSt-report.pdf.

  17. Gaillard, P., Stoltz, G., & van Erven, T. (2014). A second-order bound with excess losses. ArXiv:1402.2044.

    Google Scholar 

  18. Herbster, M., & Warmuth, M. K. (1998). Tracking the best expert. Machine Learning, 32(2), 151–178.

    Article  MATH  Google Scholar 

  19. Hoerl, A., & Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12, 55–67.

    Article  MATH  Google Scholar 

  20. Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm. Information and Computation, 108(2), 212–261.

    Article  MATH  MathSciNet  Google Scholar 

  21. Mallet, V. (2010). Ensemble forecast of analyses: Coupling data assimilation and sequential aggregation. Journal of Geophysical Research, 115(D24303), 1–10.

    Google Scholar 

  22. Mallet, V., Stoltz, G., & Mauricette, B. (2009). Ozone ensemble forecast with machine learning algorithms. Journal of Geophysical Research, 114(D05307), 1–13.

    Google Scholar 

  23. Monteleoni, C., Schmidt, G. A., Saroha, S., & Asplund, E. (2011). Tracking climate models. Statistical Analysis and Data Mining, 4(4), 372–392.

    Article  MathSciNet  Google Scholar 

  24. Nedellec, R., Cugliari, J., & Goude, Y. (2014). Gefcom2012: Electric load forecasting and backcasting with semi-parametric models. International Journal of Forecasting, 30(2), 375–381.

    Article  Google Scholar 

  25. Pierrot, A., & Goude, Y. (2011). Short-term electricity load forecasting with generalized additive models. In: Proceedings of ISAP power, Hersonisos, Greece (pp. 593–600).

    Google Scholar 

  26. Vovk, V. (2001). Competitive on-line statistics. International Statistical Review, 69(2), 213–248.

    Article  MATH  Google Scholar 

  27. Vovk, V. G. (1990). Aggregating strategies. In Proceedings of the Third Workshop on Computational Learning Theory, Rochester (pp. 371–386).

    Google Scholar 

  28. Wood, S. (2006). Generalized additive models: An introduction with R. Boca Raton: Chapman and Hall/CRC.

    Google Scholar 

  29. Wood, S., Goude, Y., & Shaw, S. (2015). Generalized additive models for large datasets. Journal of Royal Statistical Society, Series C, 64(1), 139–155.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers, the editors, and Gilles Stoltz for their valuable comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Gaillard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gaillard, P., Goude, Y. (2015). Forecasting Electricity Consumption by Aggregating Experts; How to Design a Good Set of Experts. In: Antoniadis, A., Poggi, JM., Brossat, X. (eds) Modeling and Stochastic Learning for Forecasting in High Dimensions. Lecture Notes in Statistics(), vol 217. Springer, Cham. https://doi.org/10.1007/978-3-319-18732-7_6

Download citation

Publish with us

Policies and ethics