Skip to main content

Artificial Antibacterial Surfaces that are Simple to Fabricate

  • Chapter
Antibacterial Surfaces

Abstract

Nanotexturing to produce surfaces containing hydrophobic functionality was demonstrated with the production of plasma etched silicon (black silicon, bSi), chemically etched copper (black copper, bCu), and nano-wrinkled metal films formed on thermally relaxed, or shrunken plastic sheets. The features common to all of these surfaces high surface area, a surface structure resulting from self-organization and are surfaces that can be coated by metallic films using sputtering techniques. Such surfaces are applicable for sensor applications. The potential for applying these surfaces in anti-biofouling and hydrophobic applications is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Buividas R, Stoddart PR, Juodkazis S (2012) Laser fabricated ripple substrates for surface-enhanced Raman scattering. Ann Phys 524(11):L5–L10

    Article  CAS  Google Scholar 

  • Buividas R, Fahim N, Juodkazytė J, Juodkazis S (2013) Novel method to determine the actual surface area of a laser-nanotextured sensor. Appl Phys A 14(1):169–175

    Google Scholar 

  • Chou A, Jaatinen E, Buividas R, Seniutinas G, Juodkazis S, Izake EL, Fredericks PM (2012) SERS substrate for detection of explosives. Nanoscale 4(23):7419–7424

    Article  CAS  PubMed  Google Scholar 

  • Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293–297

    Article  CAS  PubMed  Google Scholar 

  • Freschauf LR, McLane J, Sharma H, Khine M (2012) Shrink-induced superhydrophobic and antibacterial surfaces in consumer plastics. PLoS One 7(8):e40987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gervinskas G, Seniutinas G, Rosa L, Juodkazis S (2013a) Arrays of arbitrarily shaped nanoparticles: overlay-errorless direct ion write. Adv Opt Mater 1(6):456–459

    Article  Google Scholar 

  • Gervinskas G, Seniutinas G, Hartley JS, Kandasamy S, Stoddart PR, Juodkazis S (2013b) Surface-enhanced Raman scattering sensing on black silicon. Ann Phys 525(12):907–914

    Article  CAS  Google Scholar 

  • Hasan J, Webb HK, Truong VK, Watson GS, Watson JA, Tobin MJ, Gervinskas G, Juodkazis S, Wang JY, Crawford RJ, Ivanova EP (2012) Spatial variations and temporal metastability of the self-cleaning and superhydrophobic properties of damselfly wings. Langmuir 28(50):17404–17409

    Article  CAS  PubMed  Google Scholar 

  • Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S, Truong VK, Wu AHF, Lamb RN, Baulin V, Watson GS, Watson JA, Mainwaring DE, Crawford RJ (2013) Bactericidal activity of nanostructured black silicon. Nat Commun 4:2838

    Article  PubMed Central  PubMed  Google Scholar 

  • Jayawardhana S, Rosa L, Buividas R, Stoddart PR, Juodkazis S (2012) Light enhancement in surface-enhanced Raman scattering at oblique incidence. Photonic Sens 2(3):283–288

    Article  Google Scholar 

  • Juodkazis S, Yamasaki K, Matsuo S, Misawa H (2004) Glass transition- assisted microstructuring in polystyrene. Appl Phys Lett 84(4):514–516

    Article  CAS  Google Scholar 

  • Juodkazis K, Juodkazytė J, Šebeka B, Savickaja I, Juodkazis S (2013) Photoelectrochemistry of silicon in HF solution. J Solid State Electrochem 17(8):2269–2276

    Article  CAS  Google Scholar 

  • Juodkazytė J, Šebeka B, Savickaja I, Selskis A, Jasulaitienė V, Kalinauskas P (2013) Evaluation of electrochemically active surface area of photosensitive copper oxide nanostructures with extremely high surface rough- ness. Electrochim Acta 109:109–115

    Article  Google Scholar 

  • Juodkazytė J, Sˇebeka B, Savickaja I, Jagminas A, Jasulaitiene˙ V, Sel- skis A, Kovger J, Mack P (2014) Study on copper oxide stability in photoelectrochemical cell composed of nanostructured TiO2 and Cu x O electrodes. Electrochim Acta 137:363–371

    Article  Google Scholar 

  • Kondo T, Juodkazis S, Misawa H (2005) Reduction of capillary force for high-aspect ratio nanofabrication. Appl Phys A 81(8):1583–1586

    Article  CAS  Google Scholar 

  • Lapierre F, Brunet P, Coffinier Y, Thomy V, Blossey R, Boukher- roub R (2010) Electrowetting and droplet impalement experiments on superhydrophobic multiscale structures. Faraday Discuss 146:125–139

    Article  CAS  PubMed  Google Scholar 

  • Lapierre F, Brunet P, Coffinier Y, Thomy V, Blossey R, Boukher- roub R (2011a) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 11:1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V, Boukherroub R (2011b) EWOD driven cleaning of bioparticles on hydrophobic and superhydrophobic surfaces. Lab Chip 11:490–496

    Article  PubMed  Google Scholar 

  • Lapierre F, Piret G, Drobecq H, Melnyk O, Coffinier Y, Thomy V, Boukherroub R (2011c) High sensitive matrix-free mass spectrometry analysis of peptides using silicon nanowires-based digital microfluidic device. Lab Chip 9:1620–1628

    Article  Google Scholar 

  • Lapierre F, Jonsson-Niedziolka M, Coffinier Y, Boukherroub R, Thomy V (2013) Droplet transport by electrowetting: lets get rough! Microfluid Nanofluid 15(3):327–336

    Article  CAS  Google Scholar 

  • Nishijima Y, Khurgin JB, Rosa L, Fujiwara H, Juodkazis S (2013) Randomization of gold nano-brick arrays: a tool for SERS enhancement. Opt Express 21(11):13502–13514

    Article  CAS  PubMed  Google Scholar 

  • Nishijima Y, Hashimoto Y, Rosa L, Khurgin JB, Juodkazis S (2014a) SERS scaling rules. Appl Phys A 117:647–650

    Article  CAS  Google Scholar 

  • Nishijima Y, Hashimoto Y, Rosa L, Khurgin JB, Juodkazis S (2014b) Scaling rules of SERS intensity. Adv Opt Mater 2(4):382–388

    Article  CAS  Google Scholar 

  • Park K-C, Choi HJ, Chang C-H, Cohen RE, McKinley GH, Barbastathis G (2012) Nanotextured silica surfaces with robust superhydrophobicity and omnidirectional broadband supertransmissivity. ACS Nano 6(5):3789–3799

    Article  CAS  PubMed  Google Scholar 

  • Seniutinas G, Rosa L, Gervinskas G, Brasselet E, Juodkazis S (2013) 3D nano-structures for laser nano-manipulation. Beilstein J Nanotechnol 4(1):534–541

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma H, Digman MA, Felsinger N, Gratton E, Khine M (2014) Enhanced emission of fluorophores on shrink-induced wrinkled composite structures. Opt Mater Express 4:753–763

    Article  PubMed Central  PubMed  Google Scholar 

  • Song M-J, Hwang SW, Whang D (2010) Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80:1648–1652

    Article  CAS  PubMed  Google Scholar 

  • Tobin MJ, Puskar L, Hasan J, Webb HK, Hirschmugl CJ, Nasse MJ, Gervinskas G, Juodkazis S, Watson GS, Watson JA, Crawford RJ, Ivanova EP (2013) High spatial resolution mapping of superhydrophobic cicada wing surface chemistry using infrared microspectroscopy and infrared imaging at two synchrotron beamlines. J Synchrotron Radiat 20(3):482–489

    Article  CAS  PubMed  Google Scholar 

  • Žukauskas A, Malinauskas M, Kadys A, Gervinskas G, Seniutinas G, Kandasamy S, Juodkazis S (2013) Black silicon: substrate for laser 3D micro/nano-polymerization. Opt Express 21(6):6901–6909

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge G. Gervinskas, M. Pierrette, J. Juodkazytė for collaboration on the development and fabrication of the black silicon and black copper samples. The authors are grateful for support via the Australian Research Council DP130101205 Discovery project.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Balčytis, A., Seniutinas, G., Lapierre, F., Juodkazis, S. (2015). Artificial Antibacterial Surfaces that are Simple to Fabricate. In: Ivanova, E., Crawford, R. (eds) Antibacterial Surfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-18594-1_3

Download citation

Publish with us

Policies and ethics