Skip to main content

Decision Making Tools: Sensitivity Analysis for the Constant Sum Pair-wise Comparison Method

  • Chapter
Hierarchical Decision Modeling

Part of the book series: Innovation, Technology, and Knowledge Management ((ITKM))

Abstract

Every hierarchical decision modeling process starts with quantifying the contributions of decision elements through pair-wise comparisons. As subjective values, the pair-wise comparison judgments are seldom provided at a 100 % confidence level and are subject to variations. To increase the model’s validity and ensure requisite decision making, it is important to know how sensitive the model result is to these inputs. In this chapter, a sensitivity analysis algorithm is developed to test a hierarchical decision model’s robustness to the pair-wise comparison judgment inputs acquired from the constant sum method. It defines the allowable region of perturbation(s) induced to a judgment matrix at any level of a decision hierarchy to keep the current ranking of decision alternatives unchanged. An example will be presented to demonstrate the application of this algorithm in technology selection.

A prior revision of this chapter was included in the conference proceedings of Portland International Conference on Management of Engineering and Technology, 2011.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barzilai, J., & Lootsma, F. A. (1997). Power relations and group aggregation in the multiplicative AHP and SMART. Journal of Multi-Criteria Decision Analysis, 6, 155–165.

    Article  Google Scholar 

  2. Bell, T. R. (1980). A consistency measure of the constant-sum method (pp. 66–76). Pittsburgh, PA: University of Pittsburgh.

    Google Scholar 

  3. Belton, V., & Gear, T. (1985). The legitimacy of rank reversal – a comment. Omega, 13(3), 143–144.

    Article  Google Scholar 

  4. Butler, J., Jia, J., et al. (1997). Simulation techniques for the sensitivity analysis of multi-criteria decision models. European Journal of Operational Research, 103, 531–546.

    Article  Google Scholar 

  5. Chen, H. (2007). Sensitivity analysis for hierarchical decision models. Portland State University. Ph.D.

    Google Scholar 

  6. Chen, H., Ho, J. C., et al. (2009). A strategic technology planning framework: A case of Taiwan’s semiconductor foundry industry. IEEE Transactions on Engineering Management, 56(1), 4–15.

    Article  Google Scholar 

  7. Chen, H., & Kocaoglu, D. F. (2008). A sensitivity analysis algorithm for hierarchical decision models. European Journal of Operational Research, 185(1), 266–288.

    Article  Google Scholar 

  8. Cleland, D. I., & Kocaoglu, D. F. (1981). Engineering management. New York, NY: McGraw-Hill, Inc.

    Google Scholar 

  9. Clemen, R. T., & Reilly, T. (2001). Making hard decisions with DecisionTools®. Belmont, CA: Duxbury Thomson Learning.

    Google Scholar 

  10. Comrey, A. L. (1950). A proposed method for absolute ratio scaling. Psychometrika, 15, 317–325.

    Article  Google Scholar 

  11. Dantzig, G. B. (1963). Linear programming and extensions. Princeton, NJ: Princeton University Press.

    Google Scholar 

  12. Evans, J. R. (1984). Sensitivity analysis in decision theory. Decision Sciences, 15(1), 239–247.

    Article  Google Scholar 

  13. Ferrell, W. R. (1985). Combining individual judgments. London: Plenum Press.

    Book  Google Scholar 

  14. Gerdsri, N., & Kocaoglu, D. F. (2007). Applying the analytic hierarchy process (AHP) to build a strategic framework for technology roadmapping. Mathematical and Computer Modelling, 46, 1071–1080.

    Article  Google Scholar 

  15. Gholamnezhad, A. H., & Saaty, T. L. (1982). A desired energy mix for the United States in the year 2000: An analytic hierarchy process. International Journal of Policy Analysis and Information Systems, 6(1), 47–64.

    Google Scholar 

  16. Guilford, J. P. (1954). Psychometric methods. New York, NY: McGraw Hill Book Company, Inc.

    Google Scholar 

  17. Hastie, R., & Kameda, T. (2005). The robust beauty of majority rules in group decisions. Psychological Review, 112(2), 494–508.

    Article  Google Scholar 

  18. Hauser, D., & Tadikamalla, P. (1996). The analytic hierarchy process in an uncertain environment: A simulation approach. European Journal of Operational Research, 91(1), 27–37.

    Article  Google Scholar 

  19. Ho, C. (2004). Strategic evaluation of emerging technologies in the semiconductor foundry industry (Special Case: Taiwan Semiconductor Foundry Industry). Portland State University, Ph.D.

    Google Scholar 

  20. Huang, C.-C., Chu, P.-Y., et al. (2008). A fuzzy AHP application in government-sponsored R&D project selection. Omega, 36(6), 1038–1052.

    Article  Google Scholar 

  21. Huang, Y. (2002). Enhancement on sensitivity analysis of priority in analytical hierarchy process. International Journal of General System, 31(5), 531–542.

    Article  Google Scholar 

  22. Klir, G. J. (2002). Facets of systems science. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  23. Kocaoglu, D. F. (1976). A systems approach to the resource allocation process in police patrol. University of Pittsburgh, Ph.D.

    Google Scholar 

  24. Kocaoglu, D. F. (1983). A participative approach to program evaluation. IEEE Transactions on Engineering Management, 30(3), 37–44.

    Google Scholar 

  25. Lee, S. K., Mogi, G., et al. (2008). The competitiveness of Korea as a developer of hydrogen energy technology: The AHP approach. Energy Policy, 36(4), 1284–1291.

    Article  Google Scholar 

  26. Liberatore, M. J., & Nydick, R. L. (2008). The analytic hierarchy process in medical and health care decision making: A literature review. European Journal of Operational Research, 189(1), 194–207.

    Article  Google Scholar 

  27. Lootsma, L. A. (1999). Multi-criteria decision analysis via ratio and difference judgment. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  28. Masuda, T. (1990). Hierarchical sensitivity analysis of the priority used in analytic hierarchy process. International Journal of System Science, 21(2), 415–427.

    Article  Google Scholar 

  29. Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97.

    Article  Google Scholar 

  30. Ra, J. W. (1988). Analysis of expert judgments in hierarchical decision process, University of Pittsburgh, Ph.D.

    Google Scholar 

  31. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw Hill.

    Google Scholar 

  32. Saaty, T. L. (2000). Fundamentals of decision making and priority theory with the analytic hierarchy process. Pittsburgh, PA: RWS Publications.

    Google Scholar 

  33. Triantaphyllou, E., & Sanchez, A. (1997). A sensitivity analysis approach for some deterministic multi-criteria decision-making methods. Decision Science, 28(1), 151–194.

    Article  Google Scholar 

  34. Trucker, A. (2007). Applied combinatorics. New York: Wiley.

    Google Scholar 

  35. Wang, Y.-M., Liu, J., et al. (2008). An integrated AHP-DEA methodology for bridge risk assessment. Computers & Industrial Engineering, 54(3), 513–525.

    Article  Google Scholar 

  36. Wang, Y.-M., Luo, Y., et al. (2008). On the extent analysis method for fuzzy AHP and its applications. European Journal of Operational Research, 186(2), 735–747.

    Article  Google Scholar 

  37. Winebrake, J. J., & Creswick, B. P. (2003). The future of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process. Technological Forecasting and Social Change, 70(2003), 359–384.

    Article  Google Scholar 

  38. Yeh, J., Kreng, B., et al. (2001). A consensus approach for synthesizing the elements of comparison matrix in the analytic hierarchy process. International Journal of System Science, 32(11), 1353–1363.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Chen, H. (2016). Decision Making Tools: Sensitivity Analysis for the Constant Sum Pair-wise Comparison Method. In: Daim, T. (eds) Hierarchical Decision Modeling. Innovation, Technology, and Knowledge Management. Springer, Cham. https://doi.org/10.1007/978-3-319-18558-3_13

Download citation

Publish with us

Policies and ethics