Skip to main content

Development of an Infarct Volume Algorithm to Correct for Brain Swelling After Ischemic Stroke in Rats

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

The primary measure for experimental stroke studies, infarct volume, can be affected by brain swelling. The algorithm by Lin et al. was developed to correct for brain swelling, however, the correction is not adequate. This chapter presents a new infarct volume algorithm that more appropriately corrects for brain hemisphere volume changes (swelling and stunted growth). Fifty-one adult rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO). Forty-four P10 rat pups were sacrificed 48 h after hypoxia-ischemia (HI). Infarct volumes for 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) stained brains were calculated using our algorithm and that of Lin and colleagues. For MCAO animals, the algorithm of Lin et al. computed smaller infarct volumes than those of our algorithm. For HI animals, Lin et al.’s algorithm’s infarct volumes were greater than those of our algorithm. For sham animals, Lin et al.’s algorithm’s computed infarct volumes were significantly different from those of our algorithm. Our algorithm produces a more robust estimation of infarct volume than Lin et al.’s algorithm because the effects of ipsilesional hemisphere volume changes are minimized. Herein, our algorithm yields an infarct volume that better corrects for brain swelling and stunted brain growth compared with the algorithm of Lin et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM (1986) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308

    Article  CAS  PubMed  Google Scholar 

  2. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  CAS  PubMed  Google Scholar 

  3. Belayev L, Khoutorova L, Deisher TA, Belayev A, Busto R, Zhang Y, Zhao W, Ginsberg MD (2003) Neuroprotective effect of SolCD39, a novel platelet aggregation inhibitor, on transient middle cerebral artery occlusion in rats. Stroke 34:758–763

    Article  CAS  PubMed  Google Scholar 

  4. Bhattacharya P, Pandey AK, Paul S, Patnaik R, Yavagal DR (2013) Aquaporin-4 inhibition mediates piroxicam-induced neuroprotection against cerebral ischemia/reperfusion injury in rodents. PLoS One 8, e73481

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Calvert JW, Cahill J, Yamaguchi-Okada M, Zhang JH (2006) Oxygen treatment after experimental hypoxia-ischemia in neonatal rats alters the expression of HIF-1 alpha and its downstream target genes. J Appl Physiol 101:853–865

    Article  CAS  PubMed  Google Scholar 

  6. Carano RA, Li F, Irie K, Helmer KG, Silva MD, Fisher M, Sotak CH (2000) Multispectral analysis of the temporal evolution of cerebral ischemia in the rat brain. J Magn Reson Imaging 12:842–858

    Article  CAS  PubMed  Google Scholar 

  7. Chen H, Burris M, Fajilan A, Spangnoli F, Tang J, Zhang JH (2011) Prolonged exposure to isoflurane ameliorates infarction severity in the rat pup model of neonatal hypoxia-ischemia. Transl Stroke Res 2011:382–390

    Article  Google Scholar 

  8. Chen ST, Hsu CY, Hogan EL, Juan HY, Banik NL, Balentine JD (1987) Brain calcium content in ischemic infarction. Neurology 37:1227–1229

    Article  CAS  PubMed  Google Scholar 

  9. Chen ST, Hsu CY, Hogan EL, Maricq H, Balentine JD (1986) A model of focal ischemic stroke in the rat: reproducible extensive cortical infarction. Stroke 17:738–743

    Article  CAS  PubMed  Google Scholar 

  10. Duverger D, MacKenzie ET (1988) The quantification of cerebral infarction following focal ischemia in the rat: influence of strain, arterial pressure, blood glucose concentration, and age. J Cereb Blood Flow Metab 8:449–461

    Article  CAS  PubMed  Google Scholar 

  11. Fabian R, Kent T (2012) Hyperglycemia accentuates persistent “functional uncoupling” of cerebral microvascular nitric oxide and superoxide following focal ischemia/reperfusion in rats. Transl Stroke Res 3:482–490

    Article  CAS  PubMed  Google Scholar 

  12. Foley LM, Hitchens TK, Barbe B, Zhang F, Ho C, Rao GR, Nemoto EM (2010) Quantitative temporal profiles of penumbra and infarction during permanent middle cerebral artery occlusion in rats. Transl Stroke Res 1:220–229

    Article  PubMed Central  PubMed  Google Scholar 

  13. Garcia JH (1984) Experimental ischemic stroke: a review. Stroke 15:5–14

    Article  CAS  PubMed  Google Scholar 

  14. Gartshore G, Patterson J, Macrae IM (1997) Influence of ischemia and reperfusion on the course of brain tissue swelling and blood–brain barrier permeability in a rodent model of transient focal cerebral ischemia. Exp Neurol 147:353–360

    Article  CAS  PubMed  Google Scholar 

  15. Hafez S, Coucha M, Bruno A, Fagan SC, Ergul A (2014) Hyperglycemia, acute ischemic stroke, and thrombolytic therapy. Transl Stroke Res 5:442–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Harvey J, Rasmussen T (1951) Occlusion of the middle cerebral artery: an experimental study. Arch Neurol Psychiatry 66:20–29

    Article  CAS  Google Scholar 

  17. Hoff JT, Nishimura M, Newfield P (1982) Pentobarbital protection from cerebral infarction without suppression of edema. Stroke 13:623–628

    Article  CAS  PubMed  Google Scholar 

  18. Jiang Q, Chopp M, Zhang ZG, Knight RA, Jacobs M, Windham JP, Peck D, Ewing JR, Welch KM (1997) The temporal evolution of MRI tissue signatures after transient middle cerebral artery occlusion in rat. J Neurol Sci 145:15–23

    Article  CAS  PubMed  Google Scholar 

  19. Jones PG, Coyle P (1984) Microcomputer assisted lesion size measurements in spontaneously hypertensive stroke-prone rats. J Electrophysiol Tech 11:71–78

    Google Scholar 

  20. Kawamura S, Yasui N, Shirasawa M, Fukasawa H (1991) Rat middle cerebral artery occlusion using an intraluminal thread technique. Acta Neurochir 109:126–132

    Article  CAS  PubMed  Google Scholar 

  21. Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM (2014) Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 5:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kondo T, Reaume AG, Huang TT, Carlson E, Murakami K, Chen SF, Hoffman EK, Scott RW, Epstein CJ, Chan PH (1997) Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci 17:4180–4189

    CAS  PubMed  Google Scholar 

  23. Lee J, Lee JK, Han K (2011) InfarctSizer: computing infarct volume from brain images of a stroke animal model. Comput Methods Biomech Biomed Engin 14:497–504

    Article  PubMed  Google Scholar 

  24. Lin TN, He YY, Wu G, Khan M, Hsu CY (1993) Effect of brain edema on infarct volume in a focal cerebral ischemia model in rats. Stroke 24:117–121

    Article  CAS  PubMed  Google Scholar 

  25. Lundy EF, Solik BS, Frank RS, Lacy PS, Combs DJ, Zelenock GB, D’Alecy LG (1986) Morphometric evaluation of brain infarcts in rats and gerbils. J Pharmacol Methods 16:201–214

    Article  CAS  PubMed  Google Scholar 

  26. Mandava P, Martini SR, Munoz M, Dalmeida W, Sarma AK, Anderson JA, Fabian RH, Kent TA (2014) Hyperglycemia worsens outcome after rt-PA primarily in the large-vessel occlusive stroke subtype. Transl Stroke Res 5:519–525

    Article  PubMed  Google Scholar 

  27. Meyer JS, Denny-Brown D (1957) The cerebral collateral circulation. I. Factors influencing collateral blood flow. Neurology 7:447–458

    Article  CAS  PubMed  Google Scholar 

  28. Nemoto E, Mendez O, Kerr M, Firlik A, Stevenson K, Jovin T, Yonas H (2012) CT density changes with rapid onset acute, severe, focal cerebral ischemia in monkeys. Transl Stroke Res 3:369–374

    Article  PubMed  Google Scholar 

  29. Osborne KA, Shigeno T, Balarsky AM, Ford I, McCulloch J, Teasdale GM, Graham DI (1987) Quantitative assessment of early brain damage in a rat model of focal cerebral ischaemia. J Neurol Neurosurg Psychiatry 50:402–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Rice JE, Vannucci RC, Brierley JB (1981) The influence of immaturity on hypoxic-ischemic brain-damage in the rat. Ann Neurol 9:131–141

    Article  PubMed  Google Scholar 

  31. Robinson RG, Shoemaker WJ, Schlumpf M, Valk T, Bloom FE (1975) Effect of experimental cerebral infarction in rat brain on catecholamines and behaviour. Nature 255:332–334

    Article  CAS  PubMed  Google Scholar 

  32. Shimamura N, Matsuda N, Kakuta K, Narita A, Ohkuma H (2013) A model of rat embolic cerebral infarction with a quantifiable, autologous arterial blood clot. Transl Stroke Res 4:564–570

    Article  PubMed  Google Scholar 

  33. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sundt TM Jr, Waltz AG (1966) Experimental cerebral infarction: retro-orbital, extradural approach for occluding the middle cerebral artery. Mayo Clin Proc 41:159–168

    PubMed  Google Scholar 

  35. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10:290–293

    Article  CAS  PubMed  Google Scholar 

  36. Tajiri N, Dailey T, Metcalf C, Mosley Y, Lau T, Staples M, van Loveren H, Kim S, Yamashima T, Yasuhara T, Date I, Kaneko Y, Borlongan C (2013) In vivo animal stroke models. Transl Stroke Res 4:308–321

    Article  PubMed Central  PubMed  Google Scholar 

  37. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17:497–504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 NS043338 grant (J.H.Z.). The authors thank Xiping Liang and Brandon Dixon.

Disclosure 

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McBride, D.W., Tang, J., Zhang, J.H. (2016). Development of an Infarct Volume Algorithm to Correct for Brain Swelling After Ischemic Stroke in Rats. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics