Skip to main content

Measurement of ROS Levels and Membrane Potential Dynamics in the Intact Carotid Body Ex Vivo

  • Chapter
Arterial Chemoreceptors in Physiology and Pathophysiology

Abstract

Reactive oxygen species (ROS) generated by the NADPH oxidase have been proposed to play an important role in the carotid body (CB) oxygen sensing process (Cross et al. 1990). Up to now it remains unclear whether hypoxia causes an increase or decrease of CB ROS levels. We transfected CBs with the ROS sensitive HSP-FRET construct and subsequently measured the intracellular redox state by means of Förster resonance energy transfer (FRET) microscopy. In a previous study we found both increasing and decreasing ROS levels under hypoxic conditions. The transition from decreasing to increasing ROS levels coincided with the change of the caging system from ambient environment caging (AEC) to individually ventilated caging (IVC) (Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H, Fandrey J, Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET based study. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00370.2013, 2014). In this work we analyze hypoxia induced ROS reaction of animals from an IVC system that had been exposed to AEC conditions for 5 days. The results further support the hypothesis of an important impact of the caging system on CB ROS reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker H (2005) The oxygen sensing signal cascade under the influence of reactive oxygen species. Philos Trans R Soc Lond Ser B Biol Sci 360(1464):2201–2210. doi:10.1098/rstb.2005.1760

    Article  CAS  Google Scholar 

  • Bernardini A, Wotzlaw C, Lipinski H-G, Fandrey J (2010) An automated real-time microscopy system for analysis of fluorescence resonance energy transfer. In: Schelkens P, Ebrahimi T, CristĂłbal G, Truchetet F, Saarikko P (eds) Proc SPIE 7723, 772311. doi:10.1117/12.854027

  • Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H. Fandrey J (2014) Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET based study. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00370.2013

  • Buttigieg J, Pan J, Yeger H, Cutz E (2012) NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence. Am J Physiol Lung Cell Mol Physiol 303(7):L598–L607. doi:10.1152/ajplung.00170.2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cross A, Henderson L, Jones OTG, Delpiano MA, Hentschel J, Acker H (1990) Involvement of an NAD(P)H oxidase as a pO2 sensor protein in the rat carotid body. Biochem J 272(3):743–747

    Google Scholar 

  • Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J, Stensaas L, Fidone S (2007) The role of NADPH oxidase in carotid body arterial chemoreceptors. Respir Physiol Neurobiol 157(1):45–54. doi:10.1016/j.resp.2006.12.003

  • He L, Dinger B, Sanders K, Hoidal J, Obeso A, Stensaas L, Fidone S, Gonzalez C (2005) Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells. Am J Physiol Lung Cell Mol Physiol 289(6):L916–L924. doi:10.1152/ajplung.00015.2005

  • Sanders KA, Sundar KM, He L, Dinger B, Fidone S, Hoidal JR (2002) Role of components of the phagocytic NADPH oxidase in oxygen sensing. J Appl Physiol (Bethesda, Md. : 1985) 93(4):1357–1364. doi:10.1152/japplphysiol.00564.2001

  • Waypa GB, Guzy R, Mungai PT, Mack MM, Marks JD, Roe MW, Schumacker PT (2006) Increases in mitochondrial reactive oxygen species trigger hypoxia-induced calcium responses in pulmonary artery smooth muscle cells. Circ Res 99(9):970–978. doi:10.1161/01.RES.0000247068.75808.3f

    Article  PubMed  CAS  Google Scholar 

  • Wu W, Platoshyn O, Firth AL, Yuan JX-J (2007) Hypoxia divergently regulates production of reactive oxygen species in human pulmonary and coronary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 293(4):L952–L959. doi:10.1152/ajplung.00203.2007

    Article  PubMed  CAS  Google Scholar 

  • York JM, McDaniel AW, Blevins NA, Guillet RR, Allison SO, Cengel KA, Freund GG (2012) Individually ventilated cages cause chronic low-grade hypoxia impacting mice hematologically and behaviorally. Brain Behav Immun 26(6):951–958. doi:10.1016/j.bbi.2012.04.008

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Bernardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bernardini, A. et al. (2015). Measurement of ROS Levels and Membrane Potential Dynamics in the Intact Carotid Body Ex Vivo. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_7

Download citation

Publish with us

Policies and ethics