Skip to main content

Normal Postnatal Ocular Development

  • Chapter
  • First Online:
The Eye in Pediatric Systemic Disease

Abstract

An understanding of normal structural and functional development of the eye and adnexa assists in the identification of abnormal departures reflecting disease processes. Normal data for visual acuity, refractive error, and globe size are presented along with specifications for the anatomic development of the cornea, anterior chamber, iris, lens, ciliary body, vitreous, retina, sclera, optic nerve and sheath, vasculature, extraocular muscles, eyelids, orbit and sinuses. Normal values for intraocular pressure and visual fields are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilmer HA, Scammon RE. Growth of the components of the human eyeball. I. Diagrams, calculations, computation and reference tables. Arch Ophthalmol. 1950;43:599–619.

    Article  CAS  Google Scholar 

  2. Ciancia AO. Management of esodeviations under the age of two. Int Ophthalmol Clin. 1966;6:503–18.

    CAS  PubMed  Google Scholar 

  3. Pieh C, Proudlock F, Gottlob I. Smooth pursuit in infants: maturation and the influence of stimulation. Br J Ophthalmol. 2012;96:73–7.

    Article  PubMed  Google Scholar 

  4. Goren CC, Sarty M, Wu PY. Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics. 1975;56:544–9.

    CAS  PubMed  Google Scholar 

  5. Fitzgerald HE. Autonomic pupillary reflex activity during early infancy and its relation to social and nonsocial visual stimuli. J Exp Child Psychol. 1968;6:470–82.

    Article  CAS  PubMed  Google Scholar 

  6. Molteno AC, Hodgkinson IJ, Hewitt CJ, Sanderson GF. The development of fixing and focusing behaviour in normal human infants as observed with the Otago photoscreener. Aust N Z J Ophthalmol. 1992;20:197–205.

    Article  CAS  PubMed  Google Scholar 

  7. Dobson V, Teller DY. Visual acuity in human infants: a review and comparison of behavioral and electrophysiological studies. Vision Res. 1978;18:1469–83.

    Article  CAS  PubMed  Google Scholar 

  8. Lewis TL, Maurer D, Brent HP. Development of grating acuity in children treated for unilateral or bilateral congenital cataract. Invest Ophthalmol Vis Sci. 1995;36:2080–95.

    CAS  PubMed  Google Scholar 

  9. Norcia AM, Tyler CW. Spatial frequency sweep VEP: visual acuity during the first year of life. Vision Res. 1985;25:1399–408.

    Article  CAS  PubMed  Google Scholar 

  10. Allen D, Tyler CW, Norcia AM. Development of grating acuity and contrast sensitivity in the central and peripheral visual field of the human infant. Vision Res. 1996;36:1945–53.

    Article  CAS  PubMed  Google Scholar 

  11. McMillan JA, Oski FAP. Practice of p. Oski’s pediatrics: principles & practice. 4th ed. Philadelphia, PA/London: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  12. Banks MS, Salapatek P. Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Invest Ophthalmol Vis Sci. 1978;17:361–5.

    CAS  PubMed  Google Scholar 

  13. Fiorentini A, Pirchio M, Spinelli D. Scotopic contrast sensitivity in infants evaluated by evoked potentials. Invest Ophthalmol Vis Sci. 1980;19:950–5.

    CAS  PubMed  Google Scholar 

  14. Kushner BJ, Lucchese NJ, Morton GV. Variation in axial length and anatomical landmarks in strabismic patients. Ophthalmology. 1991;98:400–6.

    Article  CAS  PubMed  Google Scholar 

  15. Morin JD, Hill JC, Anderson JE, Grainger RM. A study of growth in the interorbital region. Am J Ophthalmol. 1963;56:895–901.

    Article  CAS  PubMed  Google Scholar 

  16. Fledelius HC, Christensen AC. Reappraisal of the human ocular growth curve in fetal life, infancy, and early childhood. Br J Ophthalmol. 1996;80:918–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stafford Jr JR, Rosen TS, Zaider M, Merriam JC. Prenatal cocaine exposure and the development of the human eye. Ophthalmology. 1994;101:301–8.

    Article  PubMed  Google Scholar 

  18. Larsen JS. The sagittal growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty. Acta Ophthalmol (Copenh). 1971;49:873–86.

    Article  CAS  Google Scholar 

  19. Swan KC, Wilkins JH. Extraocular muscle surgery in early infancy—anatomical factors. J Pediatr Ophthalmol Strabismus. 1984;21:44–9.

    CAS  PubMed  Google Scholar 

  20. Ellis F. Surgical choices: how does the infant eye differ from the adult’s: the role of the intraocular lens. Am Orthop J. 1997;47:12–6.

    Google Scholar 

  21. Hahn FJ, Chu WK. Ocular volume measured by CT scans. Neuroradiology. 1984;26:419–20.

    Article  CAS  PubMed  Google Scholar 

  22. Abrahamsson M, Fabian G, Andersson AK, Sjostrand J. A longitudinal study of a population based sample of astigmatic children. I. Refraction and amblyopia. Acta Ophthalmol (Copenh). 1990;68:428–34.

    Article  CAS  Google Scholar 

  23. Aurell E, Norrsell K. A longitudinal study of children with a family history of strabismus: factors determining the incidence of strabismus. Br J Ophthalmol. 1990;74:589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kuo A, Sinatra RB, Donahue SP. Distribution of refractive error in healthy infants. J AAPOS. 2003;7:174–7.

    Article  PubMed  Google Scholar 

  25. Ehrlich DL, Atkinson J, Braddick O, Bobier W, Durden K. Reduction of infant myopia: a longitudinal cycloplegic study. Vision Res. 1995;35:1313–24.

    Article  CAS  PubMed  Google Scholar 

  26. Harley RD, Nelson LB, Olitsky SE. In: Nelson LB, Olitsky SE, editors. Harley’s pediatric ophthalmology. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  27. Brown NP, Koretz JF, Bron AJ. The development and maintenance of emmetropia. Eye (Lond). 1999;13(Pt 1):83–92.

    Article  Google Scholar 

  28. Fulton AB, Dobson V, Salem D, Mar C, Petersen RA, Hansen RM. Cycloplegic refractions in infants and young children. Am J Ophthalmol. 1980;90:239–47.

    Article  CAS  PubMed  Google Scholar 

  29. Mayer DL, Hansen RM, Moore BD, Kim S, Fulton AB. Cycloplegic refractions in healthy children aged 1 through 48 months. Arch Ophthalmol. 2001;119:1625–8.

    Article  CAS  PubMed  Google Scholar 

  30. Deng L, Gwiazda JE. Anisometropia in children from infancy to 15 years. Invest Ophthalmol Vis Sci. 2012;53(7):3782–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Inagaki Y. The rapid change of corneal curvature in the neonatal period and infancy. Arch Ophthalmol. 1986;104:1026–7.

    Article  CAS  PubMed  Google Scholar 

  32. Ingram RM, Walker C, Wilson JM, Arnold PE, Dally S. Prediction of amblyopia and squint by means of refraction at age 1 year. Br J Ophthalmol. 1986;70:12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Borchert MS, Varma R, Cotter SA, et al. Risk factors for hyperopia and myopia in preschool children the multi-ethnic pediatric eye disease and Baltimore pediatric eye disease studies. Ophthalmology. 2011;118:1966–73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rosenbloom AA, Morgan MW. Principles and practice of pediatric optometry. Philadelphia, PA: Lippincott; 1990.

    Google Scholar 

  35. Zadnik K, Mutti DO, Friedman NE, Adams AJ. Initial cross-sectional results from the Orinda longitudinal study of myopia. Optom Vis Sci. 1993;70:750–8.

    Article  CAS  PubMed  Google Scholar 

  36. Wallman J. Nature and nurture of myopia. Nature. 1994;371:201–2.

    Article  CAS  PubMed  Google Scholar 

  37. Valluri S, Minkovitz JB, Budak K, et al. Comparative corneal topography and refractive variables in monozygotic and dizygotic twins. Am J Ophthalmol. 1999;127:158–63.

    Article  CAS  PubMed  Google Scholar 

  38. Zadnik K, Satariano WA, Mutti DO, Sholtz RI, Adams AJ. The effect of parental history of myopia on children’s eye size. JAMA. 1994;271:1323–7.

    Article  CAS  PubMed  Google Scholar 

  39. McKean-Cowdin R, Varma R, Cotter SA, et al. Risk factors for astigmatism in preschool children: the multi-ethnic pediatric eye disease and Baltimore pediatric eye disease studies. Ophthalmology. 2011;118:1974–81.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Isenberg SJ, Apt L, McCarty J, Cooper LL, Lim L, Del Signore M. Development of tearing in preterm and term neonates. Arch Ophthalmol. 1998;116:773–6.

    Article  CAS  PubMed  Google Scholar 

  41. Toker E, Yenice O, Ogut MS, Akman I, Ozek E. Tear production during the neonatal period. Am J Ophthalmol. 2002;133:746–9.

    Article  PubMed  Google Scholar 

  42. Katowitz JA. Pediatric oculoplastic surgery. New York/London: Springer; 2002.

    Book  Google Scholar 

  43. Della Rocca RC, Bedrossian EH, Arthurs BP. Ophthalmic plastic surgery: decision making and techniques. New York/London: McGraw-Hill, Medical Publishing Division; 2002.

    Google Scholar 

  44. Cohen AJ, Brazzo BG, Mercandetti M. The lacrimal system: diagnosis, management, and surgery. New York: Springer; 2006.

    Book  Google Scholar 

  45. Guerry 3rd D, Kendig Jr EL. Congenital impatency of the nasolacrimal duct. Arch Ophthalmol. 1948;39:193–204.

    Article  Google Scholar 

  46. Cassady JV. Developmental anatomy of nasolacrimal duct. AMA Arch Ophthalmol. 1952;47:141–58.

    Article  CAS  PubMed  Google Scholar 

  47. Speedwell L, Novakovic P, Sherrard ES, Taylor DS. The infant corneal endothelium. Arch Ophthalmol. 1988;106:771–5.

    Article  CAS  PubMed  Google Scholar 

  48. Isenberg SJ, Del Signore M, Chen A, Wei J, Christenson PD. Corneal topography of neonates and infants. Arch Ophthalmol. 2004;122:1767–71.

    Article  PubMed  Google Scholar 

  49. Snir M, Axer-Siegel R, Bourla D, Kremer I, Benjamini Y, Weinberger D. Tactile corneal reflex development in full-term babies. Ophthalmology. 2002;109:526–9.

    Article  PubMed  Google Scholar 

  50. Portellinha W, Belfort Jr R. Central and peripheral corneal thickness in newborns. Acta Ophthalmol (Copenh). 1991;69:247–50.

    Article  CAS  Google Scholar 

  51. Remon L, Cristobal JA, Castillo J, Palomar T, Palomar A, Perez J. Central and peripheral corneal thickness in full-term newborns by ultrasonic pachymetry. Invest Ophthalmol Vis Sci. 1992;33:3080–3.

    CAS  PubMed  Google Scholar 

  52. Lopez JP, Freedman SF, Muir K, et al. Central corneal thickness in children and adolescents with pediatric glaucoma and eye disorders at risk of developing glaucoma. J Pediatr Ophthalmol Strabismus. 2010;48(2):108–16.

    Article  PubMed  Google Scholar 

  53. Ehlers N, Sorensen T, Bramsen T, Poulsen EH. Central corneal thickness in newborns and children. Acta Ophthalmol (Copenh). 1976;54:285–90.

    Article  CAS  Google Scholar 

  54. Dimasi DP, Burdon KP, Craig JE. The genetics of central corneal thickness. Br J Ophthalmol. 2010;94:971–6.

    Article  CAS  PubMed  Google Scholar 

  55. Lim L, Gazzard G, Chan YH, et al. Corneal biomechanics, thickness and optic disc morphology in children with optic disc tilt. Br J Ophthalmol. 2008;92:1461–6.

    Article  CAS  PubMed  Google Scholar 

  56. Kirwan C, O’Keefe M, Lanigan B. Corneal hysteresis and intraocular pressure measurement in children using the reichert ocular response analyzer. Am J Ophthalmol. 2006;142:990–2.

    Article  PubMed  Google Scholar 

  57. Kirwan C, O’Keefe M. Corneal hysteresis using the Reichert ocular response analyser: findings pre- and post-LASIK and LASEK. Acta Ophthalmol. 2008;86:215–18.

    Article  PubMed  Google Scholar 

  58. Ortiz D, Pinero D, Shabayek MH, Arnalich-Montiel F, Alio JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33:1371–5.

    Article  PubMed  Google Scholar 

  59. Lim L, Cheung N, Gazzard G, Chan YH, Wong TY, Saw SM. Corneal biomechanical properties and retinal vascular caliber in children. Invest Ophthalmol Vis Sci. 2009;50:121–5.

    Article  PubMed  Google Scholar 

  60. Kiryu J, Park M, Kobayashi H, Kondo T. Ultrasound biomicroscopy of the anterior segment of the eyes of infants. J Pediatr Ophthalmol Strabismus. 1998;35:320–2.

    CAS  PubMed  Google Scholar 

  61. Tawara A, Inomata H, Tsukamoto S. Ciliary body band width as an indicator of goniodysgenesis. Am J Ophthalmol. 1996;122:790–800.

    Article  CAS  PubMed  Google Scholar 

  62. Shields MB. Textbook of glaucoma. 2nd ed. Baltimore/London: Williams & Wilkins; 1987.

    Google Scholar 

  63. Wright KW, Spiegel PH. Pediatric ophthalmology and strabismus. In: Wright KW, Spiegel PH, Hengst TC, Gilbert S, Cogswell F, editors. Illustrators. 2nd ed. New York/London: Springer; 2003.

    Google Scholar 

  64. Chandler PA, Grant WM. Glaucoma. 2nd ed. Philadelphia: Lea & Febiger; 1979.

    Google Scholar 

  65. Crawford JS, Morin JD. The Eye in childhood. New York/London: Grune & Stratton; 1983.

    Google Scholar 

  66. Walton DS. Primary congenital open angle glaucoma: a study of the anterior segment abnormalities. Trans Am Ophthalmol Soc. 1979;77:746–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Giles CL. Tonometer tensions in the newborn. AMA Arch Ophthalmol. 1959;61:517–19.

    Article  CAS  PubMed  Google Scholar 

  68. Radtke ND, Cohan BE. Intraocular pressure measurement in the newborn. Am J Ophthalmol. 1974;78:501–4.

    Article  CAS  PubMed  Google Scholar 

  69. Dolcet L. Ocular tension in the newborn. Archivos Soc Oftalmol Hisp Am. 1952;12:1057–63.

    CAS  PubMed  Google Scholar 

  70. Horven I. Tonometry in newborn infants. Acta Ophthalmol (Copenh). 1961;39:911–18.

    Article  CAS  Google Scholar 

  71. Kornblueth W, Abrahamov A, Aladjemoff L, Magora F, Gombos G. Intraocular pressure in the newborn measured under general anesthesia. Arch Ophthalmol. 1962;67:750–2.

    Article  CAS  PubMed  Google Scholar 

  72. Westby RK, Skulberg A. Tonometry during general anaesthesia. Acta Ophthalmol (Copenh). 1962;40:186–91.

    Article  CAS  Google Scholar 

  73. Hetherington Jr J, Shaffer RN. Tonometry and tonography in congenital glaucoma. Invest Ophthalmol. 1968;7:134–7.

    PubMed  Google Scholar 

  74. Sampaolesi R. Ocular pressure and the anterior chamber angle in the normal infant and in congenital glaucoma up to 5 years of age. Doc Ophthalmol. 1969;26:497–515.

    Article  CAS  PubMed  Google Scholar 

  75. Ravalico G, Toffoli G, Pastori G, Croce M, Calderini S. Age-related ocular blood flow changes. Invest Ophthalmol Vis Sci. 1996;37:2645–50.

    CAS  PubMed  Google Scholar 

  76. Pensiero S, Da Pozzo S, Perissutti P, Cavallini GM, Guerra R. Normal intraocular pressure in children. J Pediatr Ophthalmol Strabismus. 1992;29:79–84.

    CAS  PubMed  Google Scholar 

  77. Youn DH, Yu YS, Park IW. Intraocular pressure and axial length in children. Korean J Ophthalmol. 1990;4:26–9.

    Article  CAS  PubMed  Google Scholar 

  78. Jaafar MS, Kazi GA. Normal intraocular pressure in children: a comparative study of the Perkins applanation tonometer and the pneumatonometer. J Pediatr Ophthalmol Strabismus. 1993;30:284–7.

    CAS  PubMed  Google Scholar 

  79. Sihota R, Tuli D, Dada T, Gupta V, Sachdeva MM. Distribution and determinants of intraocular pressure in a normal pediatric population. J Pediatr Ophthalmol Strabismus. 2006;43:14–8. quiz 36-17.

    PubMed  Google Scholar 

  80. Eisenberg DL, Sherman BG, McKeown CA, Schuman JS. Tonometry in adults and children. A manometric evaluation of pneumatonometry, applanation, and TonoPen in vitro and in vivo. Ophthalmology. 1998;105:1173–81.

    Article  CAS  PubMed  Google Scholar 

  81. Johnson GJ, Corey PN, Morin JD. Tonography in infants and children. Can J Ophthalmol. 1971;6:24–9.

    CAS  PubMed  Google Scholar 

  82. Lundvall A, Svedberg H, Chen E. Application of the ICare rebound tonometer in healthy infants. J Glaucoma. 2011;20:7–9.

    Article  PubMed  Google Scholar 

  83. Bordon AF, Katsumi O, Hirose T. Tonometry in pediatric patients: a comparative study among Tono-pen, Perkins, and Schiotz tonometers. J Pediatr Ophthalmol Strabismus. 1995;32:373–7.

    CAS  PubMed  Google Scholar 

  84. Roarty JD, Keltner JL. Normal pupil size and anisocoria in newborn infants. Arch Ophthalmol. 1990;108:94–5.

    Article  CAS  PubMed  Google Scholar 

  85. Romano PE. Pupillary size in infants. Pediatrics. 1977;60:762.

    CAS  PubMed  Google Scholar 

  86. Isenberg SJ, Dang Y, Jotterand V. The pupils of term and preterm infants. Am J Ophthalmol. 1989;108:75–9.

    Article  CAS  PubMed  Google Scholar 

  87. Taylor D. Pediatric ophthalmology. Boston: Blackwell Scientific; 1990.

    Google Scholar 

  88. Ansons AM, Davis H, Mein JD. Diagnosis and management of ocular motility disorders. 3rd ed. Oxford: Blackwell Science; 2001.

    Google Scholar 

  89. Stidwill D. Orthoptic assessment and management. 2nd ed. Oxford: Blackwell Scientific; 1998.

    Google Scholar 

  90. Spierer A, Isenberg SJ, Inkelis SH. Characteristics of the iris in 100 neonates. J Pediatr Ophthalmol Strabismus. 1989;26:28–30.

    CAS  PubMed  Google Scholar 

  91. Bito LZ, Matheny A, Cruickshanks KJ, Nondahl DM, Carino OB. Eye color changes past early childhood. The Louisville Twin Study. Arch Ophthalmol. 1997;115:659–63.

    Article  CAS  PubMed  Google Scholar 

  92. Bluestein EC, Wilson ME, Wang XH, Rust PF, Apple DJ. Dimensions of the pediatric crystalline lens: implications for intraocular lenses in children. J Pediatr Ophthalmol Strabismus. 1996;33:18–20.

    CAS  PubMed  Google Scholar 

  93. Dub B. Beltrag Zur Kenntniss der Cataracta Zonularis. Graef Arch 1891;4.

    Google Scholar 

  94. Sakabe I, Oshika T, Lim SJ, Apple DJ. Anterior shift of zonular insertion onto the anterior surface of human crystalline lens with age. Ophthalmology. 1998;105:295–9.

    Article  CAS  PubMed  Google Scholar 

  95. Scammon RE, Wilmer HA. Growth of the components of the human eyeball. II. Comparison of the calculated volumes of the eyes of the newborn and of adults, and their components. Arch Ophthalmol. 1950;43:620–37.

    Article  CAS  Google Scholar 

  96. Cotlier E, Lambert S, Taylor D. Congenital cataracts. Austin, Tex: R. G. Landes; 1994.

    Google Scholar 

  97. Wilson ME, Trivedi RH, Pandey SK. Pediatric cataract surgery: techniques, complications, and management. Philadelphia, Pa/London: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  98. Richburg FA, Sun HS. Size of the crushed cataractous capsule bag. J Am Intraocul Implant Soc. 1983;9:333–5.

    Article  CAS  PubMed  Google Scholar 

  99. Fisher RF, Pettet BE. The postnatal growth of the capsule of the human crystalline lens. J Anat. 1972;112:207–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wilson Jr ME. Anterior lens capsule management in pediatric cataract surgery. Trans Am Ophthalmol Soc. 2004;102:391–422.

    PubMed  PubMed Central  Google Scholar 

  101. Krag S, Olsen T, Andreassen TT. Biomechanical characteristics of the human anterior lens capsule in relation to age. Invest Ophthalmol Vis Sci. 1997;38:357–63.

    CAS  PubMed  Google Scholar 

  102. Khurana AK. Comprehensive ophthalmology. Anshan: Tunbridge Wells; 2008 [Rev and updated ed.].

    Google Scholar 

  103. Bock P. The distribution of disulfide-groups in Descemet’s membrane, lens capsule, and zonular fibers. Acta Histochem. 1978;63:127–36.

    Article  CAS  PubMed  Google Scholar 

  104. Streeten BW, editor. Anatomy of the zonular apparatus. Philadelphia: Lippincott-Raven; 1992.

    Google Scholar 

  105. Godfrey M, Nejezchleb PA, Schaefer GB, Minion DJ, Wang Y, Baxter BT. Elastin and fibrillin mRNA and protein levels in the ontogeny of normal human aorta. Connect Tissue Res. 1993;29:61–9.

    Article  CAS  PubMed  Google Scholar 

  106. Kwitko ML. Surgery of the infant eye. New York/London: Appleton-Century-Crofts/Prentice-Hall; 1979.

    Google Scholar 

  107. Aiello AL, Tran VT, Rao NA. Postnatal development of the ciliary body and pars plana. A morphometric study in childhood. Arch Ophthalmol. 1992;110:802–5.

    Article  CAS  PubMed  Google Scholar 

  108. Hartnett ME. Pediatric retina. Philadelphia, PA/London: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  109. Provis JM, van Driel D. Retinal development in humans: the roles of differential growth rates, cell migration and naturally occurring cell death. Aust N Z J Ophthalmol. 1985;13:125–33.

    Article  CAS  PubMed  Google Scholar 

  110. Abramov I, Gordon J, Hendrickson A, Hainline L, Dobson V, LaBossiere E. The retina of the newborn human infant. Science. 1982;217:265–7.

    Article  CAS  PubMed  Google Scholar 

  111. Hendrickson A, Drucker D. The development of parafoveal and mid-peripheral human retina. Behav Brain Res. 1992;49:21–31.

    Article  CAS  PubMed  Google Scholar 

  112. Yuodelis C, Hendrickson A. A qualitative and quantitative analysis of the human fovea during development. Vision Res. 1986;26:847–55.

    Article  CAS  PubMed  Google Scholar 

  113. Isenberg SJ. Macular development in the premature infant. Am J Ophthalmol. 1986;101:74–80.

    Article  CAS  PubMed  Google Scholar 

  114. El-Dairi MA, Asrani SG, Enyedi LB, Freedman SF. Optical coherence tomography in the eyes of normal children. Arch Ophthalmol. 2009;127:50–8.

    Article  PubMed  Google Scholar 

  115. Huynh SC, Wang XY, Rochtchina E, Mitchell P. Distribution of macular thickness by optical coherence tomography: findings from a population-based study of 6-year-old children. Invest Ophthalmol Vis Sci. 2006;47:2351–7.

    Article  PubMed  Google Scholar 

  116. Huynh SC, Wang XY, Burlutsky G, Rochtchina E, Stapleton F, Mitchell P. Retinal and optic disc findings in adolescence: a population-based OCT study. Invest Ophthalmol Vis Sci. 2008;49:4328–35.

    Article  PubMed  Google Scholar 

  117. Stone J, Itin A, Alon T, et al. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci. 1995;15:4738–47.

    CAS  PubMed  Google Scholar 

  118. Birch DG, Anderson JL. Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol. 1992;110:1571–6.

    Article  CAS  PubMed  Google Scholar 

  119. Rodriguez-Saez E, Otero-Costas J, Moreno-Montanes J, Relova JL. Electroretinographic changes during childhood and adolescence. Eur J Ophthalmol. 1993;3:6–12.

    CAS  PubMed  Google Scholar 

  120. Westall CA, Panton CM, Levin AV. Time courses for maturation of electroretinogram responses from infancy to adulthood. Doc Ophthalmol. 1998;96:355–79.

    Article  PubMed  Google Scholar 

  121. Jones HE. Hyaloid remnants in the eyes of premature babies. Br J Ophthalmol. 1963;47:39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Isenberg SJ, Fishman M. B-scan ocular ultrasonography in preterm and term infants. J Pediatr Ophthalmol Strabismus. 1996;33:314–18.

    CAS  PubMed  Google Scholar 

  123. Brown GC, Tasman WS. Congenital anomalies of the optic disc. New York/London: Grune & Stratton; 1983.

    Google Scholar 

  124. Delaney Jr WV. Prepapillary hemorrhage and persistent hyaloid artery. Am J Ophthalmol. 1980;90:419–21.

    Article  PubMed  Google Scholar 

  125. Sekuler R, Kline D, Dismukes K. Aging and human visual function. New York: Liss; 1982.

    Google Scholar 

  126. Hogan MJ. The vitreous, its structure, and relation to the ciliary body and retina. Proctor award lecture. Invest Ophthalmol. 1963;2:418–45.

    CAS  PubMed  Google Scholar 

  127. Gloor BP, Daicker BC. Pathology of the vitreo-retinal border structures. Trans Ophthalmol Soc U K. 1975;95:387–90.

    CAS  PubMed  Google Scholar 

  128. Foos RY. Vitreoretinal juncture; topographical variations. Invest Ophthalmol. 1972;11:801–8.

    CAS  PubMed  Google Scholar 

  129. McCulloch C. The zonule of Zinn: its origin, course, and insertion, and its relation to neighboring structures. Trans Am Ophthalmol Soc. 1954;52:525–85.

    PubMed  PubMed Central  Google Scholar 

  130. Sebag J. Anatomy and pathology of the vitreo-retinal interface. Eye (Lond). 1992;6(Pt 6):541–52.

    Google Scholar 

  131. Arciniegas A, Amaya LE. Mechanical behavior of the sclera. Ophthalmologica. 1986;193:45–55.

    Article  CAS  PubMed  Google Scholar 

  132. Girard LJ, Neely W, Sampson WG. The use of alpha chymotrypsin in infants and children. Am J Ophthalmol. 1962;54:95–101.

    Article  CAS  PubMed  Google Scholar 

  133. Rakic P, Riley KP. Overproduction and elimination of retinal axons in the fetal rhesus monkey. Science. 1983;219:1441–4.

    Article  CAS  PubMed  Google Scholar 

  134. Hellstrom A, Hard AL, Chen Y, Niklasson A, Albertsson-Wikland K. Ocular fundus morphology in preterm children. Influence of gestational age, birth size, perinatal morbidity, and postnatal growth. Invest Ophthalmol Vis Sci. 1997;38:1184–92.

    CAS  PubMed  Google Scholar 

  135. Mansour AM. Racial variation of optic disc parameters in children. Ophthalmic Surg. 1992;23:469–71.

    CAS  PubMed  Google Scholar 

  136. Rimmer S, Keating C, Chou T, et al. Growth of the human optic disk and nerve during gestation, childhood, and early adulthood. Am J Ophthalmol. 1993;116:748–53.

    Article  CAS  PubMed  Google Scholar 

  137. Jonas JB, Gusek GC, Naumann GO. Optic disc, cup and neuroretinal rim size, configuration and correlations in normal eyes. Invest Ophthalmol Vis Sci. 1988;29:1151–8.

    CAS  PubMed  Google Scholar 

  138. Sylvester PE, Ari K. The size and growth of the human optic nerve. J Neurol Neurosurg Psychiatry. 1961;24:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kandasamy Y, Smith R, Wright IM, Hartley L. Optic disc measurements in full term infants. Br J Ophthalmol. 2012;96:662–4.

    Article  PubMed  Google Scholar 

  140. Samarawickrama C, Pai A, Tariq Y, Healey PR, Wong TY, Mitchell P. Characteristics and appearance of the normal optic nerve head in 6-year-old children. Br J Ophthalmol. 2012;96:68–72.

    Article  PubMed  Google Scholar 

  141. Elia N, Pueyo V, Altemir I, Oros D, Pablo LE. Normal reference ranges of optical coherence tomography parameters in childhood. Br J Ophthalmol. 2012;96:665–70.

    Article  PubMed  Google Scholar 

  142. Richardson KT. Optic cup symmetry in normal newborn infants. Invest Ophthalmol. 1968;7:137–40.

    CAS  PubMed  Google Scholar 

  143. Salchow DJ, Oleynikov YS, Chiang MF, et al. Retinal nerve fiber layer thickness in normal children measured with optical coherence tomography. Ophthalmology. 2006;113:786–91.

    Article  PubMed  Google Scholar 

  144. Wollstein G, Schuman JS. Normative optical coherence tomography measurements in children. Br J Ophthalmol. 2012;96:915–16.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ballantyne J, Hollman AS, Hamilton R, et al. Transorbital optic nerve sheath ultrasonography in normal children. Clin Radiol. 1999;54:740–2.

    Article  CAS  PubMed  Google Scholar 

  146. Nugent RA, Belkin RI, Neigel JM, et al. Graves orbitopathy: correlation of CT and clinical findings. Radiology. 1990;177:675–82.

    Article  CAS  PubMed  Google Scholar 

  147. Shauly Y, Miller B, Lichtig C, Modan M, Meyer E. Tenon’s capsule: ultrastructure of collagen fibrils in normals and infantile esotropia. Invest Ophthalmol Vis Sci. 1992;33:651–6.

    CAS  PubMed  Google Scholar 

  148. Holt JE, O’Connor PS, Douglas JP, Byrne B. Extraocular muscle size comparison using standardized A-scan echography and computerized tomography scan measurements. Ophthalmology. 1985;92:1351–5.

    Article  CAS  PubMed  Google Scholar 

  149. Von Noorden GK, Campos EC. Binocular vision and ocular motility: theory and management of strabismus. 6th ed. St. Louis, MO: Mosby; 2002.

    Google Scholar 

  150. Wright KW. Color atlas of ophthalmic surgery: strabismus. Philadelphia: Lippincott; 1991.

    Google Scholar 

  151. Mhlendyck H. Wachstum und Lange der ausseren augenmuskeln. Ber Zusammenkunft Dtsch Ophthalmol Ges. 1978;75:449–52.

    Google Scholar 

  152. Duke-Elder S, Wybar KC. The anatomy of the visual system. St. Louis: Mosby; 1961.

    Google Scholar 

  153. Fink WH. Surgery of the vertical muscles of the eye. 2nd ed. Springfield, Ill: Thomas; 1962.

    Google Scholar 

  154. Gregg FM, Parks MM. Stereopsis after congenital monocular cataract extraction. Am J Ophthalmol. 1992;114:314–17.

    Article  CAS  PubMed  Google Scholar 

  155. Wright KW, Matsumoto E, Edelman PM. Binocular fusion and stereopsis associated with early surgery for monocular congenital cataracts. Arch Ophthalmol. 1992;110:1607–9.

    Article  CAS  PubMed  Google Scholar 

  156. Banks MS, Aslin RN, Letson RD. Sensitive period for the development of human binocular vision. Science. 1975;190:675–7.

    Article  CAS  PubMed  Google Scholar 

  157. Archer SM, Sondhi N, Helveston EM. Strabismus in infancy. Ophthalmology. 1989;96:133–7.

    Article  CAS  PubMed  Google Scholar 

  158. Nixon RB, Helveston EM, Miller K, Archer SM, Ellis FD. Incidence of strabismus in neonates. Am J Ophthalmol. 1985;100:798–801.

    Article  CAS  PubMed  Google Scholar 

  159. Sondhi N, Archer SM, Helveston EM. Development of normal ocular alignment. J Pediatr Ophthalmol Strabismus. 1988;25:210–11.

    CAS  PubMed  Google Scholar 

  160. Chace RR, Merritt KK, Bellows M. Ocular findings in the newborn infant; a preliminary report. Arch Ophthalmol. 1950;44:236–42.

    Article  CAS  Google Scholar 

  161. Jacobs M, Harris CM, Shawkat F, Taylor D. Smooth pursuit development in infants. Aust N Z J Ophthalmol. 1997;25:199–206.

    Article  CAS  PubMed  Google Scholar 

  162. Garbutt S, Harwood MR, Harris CM. Infant saccades are not slow. Dev Med Child Neurol. 2006;48:662–7.

    Article  PubMed  Google Scholar 

  163. Metz HS. Calibration of saccades in infants. Invest Ophthalmol Vis Sci. 1984;25:1233–4.

    CAS  PubMed  Google Scholar 

  164. Kremenitzer JP, Vaughan Jr HG, Kurtzberg D, Dowling K. Smooth-pursuit eye movements in the newborn infant. Child Dev. 1979;50:442–8.

    Article  CAS  PubMed  Google Scholar 

  165. Salman MS, Sharpe JA, Lillakas L, Dennis M, Steinbach MJ. Smooth pursuit eye movements in children. Exp Brain Res. 2006;169:139–43.

    Article  PubMed  Google Scholar 

  166. Nelson LB, editor. The pediatric clinics of North America. Philadelphia: W. B. Saunders Company; 1983.

    Google Scholar 

  167. Taylor D, Hoyt CS. Pediatric ophthalmology and strabismus. 3rd ed. London/New York: Elsevier Saunders; 2005.

    Google Scholar 

  168. Donat JF, Donat JR, Lay KS. Changing response to caloric stimulation with gestational age in infants. Neurology. 1980;30:776–8.

    Article  CAS  PubMed  Google Scholar 

  169. Hoyt CS, Nickel BL, Billson FA. Ophthalmological examination of the infant. Developmental aspects. Surv Ophthalmol. 1982;26:177–89.

    Article  CAS  PubMed  Google Scholar 

  170. Banks MS. Infant refraction and accommodation. Int Ophthalmol Clin. 1980;20:205–32.

    Article  CAS  PubMed  Google Scholar 

  171. Liebman SD, Gellis SS. The pediatrician’s ophthalmology; a collaborative effort of several authors. Saint Louis: Mosby; 1966.

    Google Scholar 

  172. Allen NM, Tibussek D, Borusiak P, King MD. Images in neonatal medicine. Benign tonic downgaze of infancy. Arch Dis Child Fetal Neonatal Ed. 2010;95:F372.

    Article  CAS  PubMed  Google Scholar 

  173. Hoyt CS, Mousel DK, Weber AA. Transient supranuclear disturbances of gaze in healthy neonates. Am J Ophthalmol. 1980;89:708–13.

    Article  CAS  PubMed  Google Scholar 

  174. Ford E. Growth of the human cranial base. Am J Orthod. 1958;44:498–506.

    Article  Google Scholar 

  175. Hellman M. Changes in the human face brought about by development. Int J Orthodontics. 1927;13:475–516.

    Google Scholar 

  176. Jones KL, Hanson JW, Smith DW. Palpebral fissure size in newborn infants. J Pediatr. 1978;92:787.

    Article  CAS  PubMed  Google Scholar 

  177. Duke-Elder SS, Perkins ESS. System of ophthalmology. St. Louis: Mosby; 1966.

    Google Scholar 

  178. Iosub S, Fuchs M, Bingol N, Stone RK, Gromisch DS, Wasserman E. Palpebral fissure length in black and Hispanic children: correlation with head circumference. Pediatrics. 1985;75:318–20.

    CAS  PubMed  Google Scholar 

  179. Wang FM, Millman AL, Sidoti PA, Goldberg RB. Ocular findings in Treacher Collins syndrome. Am J Ophthalmol. 1990;110:280–6.

    Article  CAS  PubMed  Google Scholar 

  180. Paiva RS, Minare-Filho AM, Cruz AA. Palpebral fissures changes in early childhood. J Pediatr Ophthalmol Strabismus. 2001;38:219–23.

    CAS  PubMed  Google Scholar 

  181. Feingold M, Bossert WH. Normal values for selected physical parameters: an aid to syndrome delineation. Birth Defects Orig Artic Ser. 1974;10:1–16.

    CAS  PubMed  Google Scholar 

  182. Kirks DR, Griscom NT. Practical pediatric imaging: diagnostic radiology of infants and children. 3rd ed. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  183. Bron AJ, Tripathi RC, Tripathi BJ, Wolff EA. Wolff’s anatomy of the eye and orbit. 8th ed. London: Chapman & Hall Medical; 1997.

    Google Scholar 

  184. Weaver AA, Loftis KL, Tan JC, Duma SM, Stitzel JD. CT based three-dimensional measurement of orbit and eye anthropometry. Invest Ophthalmol Vis Sci. 2010;51:4892–7.

    Article  PubMed  Google Scholar 

  185. Chen AH, O’Leary DJ. Changes in the interpupillary distance with age and its effect on the near fusion free position. Aust N Z J Ophthalmol. 1997;25 Suppl 1:S6–8.

    Article  PubMed  Google Scholar 

  186. Mustarde J. Epicanthal folds and the problem of telecanthus. Trans Ophthalmol Soc U K. 1963;83:397–411.

    CAS  PubMed  Google Scholar 

  187. Wolf G, Anderhuber W, Kuhn F. Development of the paranasal sinuses in children: implications for paranasal sinus surgery. Ann Otol Rhinol Laryngol. 1993;102:705–11.

    Article  CAS  PubMed  Google Scholar 

  188. Barghouth G, Prior JO, Lepori D, Duvoisin B, Schnyder P, Gudinchet F. Paranasal sinuses in children: size evaluation of maxillary, sphenoid, and frontal sinuses by magnetic resonance imaging and proposal of volume index percentile curves. Eur Radiol. 2002;12:1451–8.

    Article  CAS  PubMed  Google Scholar 

  189. Wilson M, Quinn G, Dobson V, Breton M. Normative values for visual fields in 4- to 12-year-old children using kinetic perimetry. J Pediatr Ophthalmol Strabismus. 1991;28:151–3. discussion 154.

    CAS  PubMed  Google Scholar 

  190. Buncic JR. Normative values for visual fields in 4- to 12- year-old children using kinetic perimetry:discussion. J Pediatr Ophthalmol Strabismus. 1991;28:1.

    Google Scholar 

  191. Tomonaga M. The quantitative visual field of children (author’s transl). Nippon Ganka Gakkai Zasshi. 1974;78:482–91.

    CAS  PubMed  Google Scholar 

  192. Lakowski R, Aspinall PA. Static perimetry in young children. Vision Res. 1969;9:305–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex V. Levin M.D., M.H.Sc., F.R.C.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heinmiller, L.J., Levin, A.V. (2017). Normal Postnatal Ocular Development. In: Levin, A., Enzenauer, R. (eds) The Eye in Pediatric Systemic Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-18389-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18389-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18388-6

  • Online ISBN: 978-3-319-18389-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics