Skip to main content

Prevention of Dementia

  • Chapter
Dementia Care

Abstract

The concept of dementia prevention has recently developed tremendously, despite being perceived by many clinicians as impossible in years past. While there is no one “magic” pill, or definitive single way to prevent dementia, recent research has found that if indeed the known modifiable risk factors for AD are in the causal pathway to dementia, then one out of every three cases could potentially be prevented by addressing those factors. It is currently unclear which specific interventions would be most effective, in which patients and during which life/disease stages. This chapter offers a broad brush overview of the existing evidence which have provided some clues into the puzzle of prevention of cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown LA, Riby LM, Reay JL. Supplementing cognitive aging: a selective review of the effects of ginkgo biloba and a number of everyday nutritional substances. Exp Aging Res. 2010;36:105–22.

    Article  PubMed  Google Scholar 

  2. Daviglus ML, et al. National institutes of health state-of-the-science conference statement: preventing Alzheimer disease and cognitive decline. Ann Intern Med. 2010;153:176–81.

    Article  PubMed  Google Scholar 

  3. Shumaker SA, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the women’s health initiative memory study: a randomized controlled trial. JAMA. 2003;289:2651–62.

    Article  CAS  PubMed  Google Scholar 

  4. Middleton LE, Yaffe K. Promising strategies for the prevention of dementia. Arch Neurol. 2009;66:1210–5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Oboudiyat C, et al. Alzheimer’s disease. Semin Neurol. 2013;33(4):313–29.

    Article  PubMed  Google Scholar 

  6. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Williams JW, Plassman BL, Burke J, Benjamin S. Preventing Alzheimer’s disease and cognitive decline. Evid Rep Technol Assess (Full Rep). 2010:1–727.

    Google Scholar 

  8. Anstey KJ, Cherbuin N, Herath PM, et al. A self-report risk index to predict occurrence of dementia in three independent cohorts of older adults: the ANU-ADRI. PLoS One. 2014;9, e86141.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Smith AD, Yaffe K. Dementia (including Alzheimer’s disease) can be prevented: statement supported by international experts. J Alzheimers Dis. 2014;38(4):699–703.

    PubMed  Google Scholar 

  10. Miller ZA, Mandelli ML, Rankin KP, et al. Handedness and language learning disability differentially distribute in progressive aphasia variants. Brain. 2013;136(Pt 11):3461–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Norton S, Matthews FE, Barnes DE, et al. Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neuro. 2014;13(8):788–94.

    Article  Google Scholar 

  12. Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol. 2010;41:392–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nehlig A. Is caffeine a cognitive enhancer? J Alzheimers Dis. 2010;20 Suppl 1:S85–94.

    CAS  PubMed  Google Scholar 

  14. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69:2197–204.

    Article  PubMed  Google Scholar 

  15. Prasain JK, Carlson SH, Wyss JM. Flavonoids and age-related disease: risk, benefits and critical windows. Maturitas. 2010;66:163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller DB, O’Callaghan JP. Aging, stress and the hippocampus. Ageing Res Rev. 2005;4:123–40.

    Article  CAS  PubMed  Google Scholar 

  17. Glade MJ. Oxidative stress and cognitive longevity. Nutrition. 2010;26:595–603.

    Article  CAS  PubMed  Google Scholar 

  18. Akiyama H, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21:383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tapsell LC, et al. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185:S4–24.

    PubMed  Google Scholar 

  20. Reiman EM, Chen K, Alexander GE, et al. Functional brain abnormalities in young adults at genetic risk for late-onset alzheimer’s dementia. Proc Natl Acad Sci USA. 2004;101(1):284–9.

    Google Scholar 

  21. Silva DF, Selfridge JE, Lu J, Lezi E, Cardoso SM, Swerdlow RH. Mitochondrial abnormalities in Alzheimer’s disease: possible targets for therapeutic intervention. Adv Pharmacol. 2012;64:83–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium. 2010;47(2):183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gibson GE, Shi Q. A mitocentric view of Alzheimer’s disease suggests multi-faceted treatments. J Alzheimers Dis. 2010;20 Suppl 2:S591–607.

    PubMed  PubMed Central  Google Scholar 

  24. Feart C, Samieri C, Barberger-Gateau P. Mediterranean diet and cognitive function in older adults. Curr Opin Clin Nutr Metab Care. 2010;13:14–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Singh B, Parsaik AK, Mielke MM, et al. Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39:271–82.

    PubMed  PubMed Central  Google Scholar 

  26. Bayer-Carter JL, Green PS, Montine TJ, et al. Diet intervention and cerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Arch Neurol. 2011;68:743–52.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nilsson A, Tovar J, Johansson M, Radeborg K, Bjorck I. A diet based on multiple functional concepts improves cognitive performance in healthy subjects. Nutr Metab (Lond). 2013;10:49.

    Article  CAS  Google Scholar 

  28. Mosconi L, Murray J, Tsui WH, et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis. 2014;1(1):23–32.

    PubMed  PubMed Central  Google Scholar 

  29. Vitali C, Wellington CL, Calabresi L. HDL and cholesterol handling in the brain. Cardiovasc Res. 2014;103(3):405–13.

    Article  CAS  PubMed  Google Scholar 

  30. Kourlaba G, Polychronopoulos E, Zampelas A, Lionis C, Panagiotakos DB. Development of a diet index for older adults and its relation to cardiovascular disease risk factors: the elderly dietary index. J Am Diet Assoc. 2009;109:1022–30.

    Article  PubMed  Google Scholar 

  31. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59:912–21.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Scarmeas N, et al. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.

    PubMed  PubMed Central  Google Scholar 

  33. Feart C, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009;302:638–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gu Y, Nieves JW, Stern Y, Luchsinger JA, Scarmeas N. Food combination and Alzheimer disease risk: a protective diet. Arch Neurol. 2010;67:699–706.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Padilla CR, Isaacson RS. Genetics of dementia. Continuum (Minneap Minn). 2011;17(2 Neurogenetics):326–42.

    Google Scholar 

  36. Gureje O, Ogunniyi A, Baiyewu O, et al. APOE epsilon4 is not associated with Alzheimer’s disease in elderly Nigerians. Ann Neurol. 2006;59:182–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lima TA, Adler AL, Minett T, Matthews FE, Brayne C, Marioni RE. C-reactive protein, APOE genotype and longitudinal cognitive change in an older population. Age Ageing. 2014;43(2):289–92.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang TL, Zandi PP, Tucker KL, et al. Benefits of fatty fish on dementia risk are stronger for those without APOE epsilon4. Neurology. 2005;65:1409–14.

    Article  CAS  PubMed  Google Scholar 

  39. Barberger-Gateau P, Raffaitin C, Letenneur L, et al. Dietary patterns and risk of dementia: the Three-City cohort study. Neurology. 2007;69:1921–30.

    Article  CAS  PubMed  Google Scholar 

  40. Laitinen MH, Ngandu T, Rovio S, et al. Fat intake at midlife and risk of dementia and Alzheimer’s disease: a population-based study. Dement Geriatr Cogn Disord. 2006;22:99–107.

    Article  CAS  PubMed  Google Scholar 

  41. Borek C. Garlic reduces dementia and heart-disease risk. J Nutr. 2006;136:810S–2.

    CAS  PubMed  Google Scholar 

  42. Peng Q, Buz’Zard AR, Lau BH. Neuroprotective effect of garlic compounds in amyloid-beta peptide-induced apoptosis in vitro. Med Sci Monit. 2002;8:BR328–37.

    CAS  PubMed  Google Scholar 

  43. Budoff MJ, et al. Inhibiting progression of coronary calcification using aged garlic extract in patients receiving statin therapy: a preliminary study. Prev Med. 2004;39:985–91.

    Article  PubMed  Google Scholar 

  44. Gold PE, Cahill L, Wenk GL. The lowdown on Ginkgo biloba. Sci Am. 2003;288:86–91.

    Article  PubMed  Google Scholar 

  45. Oken BS, Storzbach DM, Kaye JA. The efficacy of Ginkgo biloba on cognitive function in Alzheimer disease. Arch Neurol. 1998;55:1409–15.

    Article  CAS  PubMed  Google Scholar 

  46. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology. 2008;70:1809–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vellas B, Coley N, Ousset PJ, Berrut G, Dartigues JF, Dubois B, Grandjean H, Pasquier F, Piette F, et al. Long-term use of standardised Ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012;11:851–9.

    Article  CAS  PubMed  Google Scholar 

  48. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 2010;10:14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peters R, Peters J, Warner J, Beckett N, Bulpitt C. Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing. 2008;37:505–12.

    Article  PubMed  Google Scholar 

  50. Orgogozo JM, et al. Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris). 1997;153:185–92.

    CAS  Google Scholar 

  51. Hamaguchi T, Ono K, Murase A, Yamada M. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. Am J Pathol. 2009;175:2557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mitchell RM, Neafsey EJ, Collins MA. Essential involvement of the NMDA receptor in ethanol preconditioning-dependent neuroprotection from amyloid-betain vitro. J Neurochem. 2009;111(2):580–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ringman JM, Frautschy SA, Teng E, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther. 2012;4:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koppelstaetter F, et al. Caffeine and cognition in functional magnetic resonance imaging. J Alzheimers Dis. 2010;20 Suppl 1:S71–84.

    CAS  PubMed  Google Scholar 

  55. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev. 1999;51:83–133.

    CAS  PubMed  Google Scholar 

  56. Dall’Igna OP, Porciuncula LO, Souza DO, Cunha RA, Lara DR. Neuroprotection by caffeine and adenosine A2A receptor blockade of beta-amyloid neurotoxicity. Br J Pharmacol. 2003;138:1207–9.

    Article  PubMed  CAS  Google Scholar 

  57. Arendash GW, et al. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience. 2006;142:941–52.

    Article  CAS  PubMed  Google Scholar 

  58. Cunha RA, Agostinho PM. Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis. 2010;20 Suppl 1:S95–116.

    CAS  PubMed  Google Scholar 

  59. Huang CC, Liang YC, Hsu KS. A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci. 1999;19:9728–38.

    CAS  PubMed  Google Scholar 

  60. d’Alcantara P, Ledent C, Swillens S, Schiffmann SN. Inactivation of adenosine A2A receptor impairs long term potentiation in the accumbens nucleus without altering basal synaptic transmission. Neuroscience. 2001;107:455–64.

    Article  PubMed  Google Scholar 

  61. Lieberman HR, Tharion WJ, Shukitt-Hale B, Speckman KL, Tulley R. Effects of caffeine, sleep loss, and stress on cognitive performance and mood during U.S. Navy SEAL training. Sea-Air-Land. Psychopharmacology (Berl). 2002;164:250–61.

    Article  CAS  Google Scholar 

  62. Smith AP. Caffeine, cognitive failures and health in a non-working community sample. Hum Psychopharmacol. 2009;24:29–34.

    Article  PubMed  Google Scholar 

  63. Rees K, Allen D, Lader M. The influences of age and caffeine on psychomotor and cognitive function. Psychopharmacology (Berl). 1999;145:181–8.

    Article  CAS  Google Scholar 

  64. Jarvis MJ. Does caffeine intake enhance absolute levels of cognitive performance? Psychopharmacology (Berl). 1993;110:45–52.

    Article  CAS  Google Scholar 

  65. Lorist MM, Snel J, Mulder G, Kok A. Aging, caffeine, and information processing: an event-related potential analysis. Electroencephalogr Clin Neurophysiol. 1995;96:453–67.

    Article  CAS  PubMed  Google Scholar 

  66. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16:85–91.

    CAS  PubMed  Google Scholar 

  67. Ritchie K, et al. The neuroprotective effects of caffeine: a prospective population study (the Three City study). Neurology. 2007;69:536–45.

    Article  CAS  PubMed  Google Scholar 

  68. van Gelder BM, et al. Coffee consumption is inversely associated with cognitive decline in elderly European men: the FINE study. Eur J Clin Nutr. 2007;61:226–32.

    Article  PubMed  Google Scholar 

  69. Corley J, et al. Caffeine consumption and cognitive function at age 70: the Lothian Birth Cohort 1936 study. Psychosom Med. 2010;72:206–14.

    Article  PubMed  Google Scholar 

  70. van Boxtel MP, Schmitt JA, Bosma H, Jolles J. The effects of habitual caffeine use on cognitive change: a longitudinal perspective. Pharmacol Biochem Behav. 2003;75:921–7.

    Article  PubMed  CAS  Google Scholar 

  71. Balk E, et al. B vitamins and berries and age-related neurodegenerative disorders. Evid Rep Technol Assess (Full Rep). 2006;164:1–161.

    Google Scholar 

  72. Riggs KM, Spiro 3rd A, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the normative aging study. Am J Clin Nutr. 1996;63:306–14.

    CAS  PubMed  Google Scholar 

  73. Wang HX, et al. Vitamin B(12) and folate in relation to the development of Alzheimer’s disease. Neurology. 2001;56:1188–94.

    Article  CAS  PubMed  Google Scholar 

  74. Seshadri S, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med. 2002;346:476–83.

    Article  CAS  PubMed  Google Scholar 

  75. Garcia A, Zanibbi K. Homocysteine and cognitive function in elderly people. CMAJ. 2004;171:897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ravaglia G, et al. Homocysteine and folate as risk factors for dementia and Alzheimer disease. Am J Clin Nutr. 2005;82:636–43.

    CAS  PubMed  Google Scholar 

  77. Kado DM, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur studies of successful aging. Am J Med. 2005;118:161–7.

    Article  CAS  PubMed  Google Scholar 

  78. Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro 3rd A. High homocysteine and low B vitamins predict cognitive decline in aging men: the veterans affairs normative aging study. Am J Clin Nutr. 2005;82:627–35.

    CAS  PubMed  Google Scholar 

  79. Plassman BL, Williams Jr JW, Burke JR, Holsinger T, Benjamin S. Systematic review: factors associated with risk for and possible prevention of cognitive decline in later life. Ann Intern Med. 2010;153:182–93.

    Article  PubMed  Google Scholar 

  80. Douaud G, Refsum H, de Jager CA, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci USA. 2013;110:9523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Terasawa M, Nakahara T, Tsukada N, Sugawara A, Itokawa Y. The relationship between thiamine deficiency and performance of a learning task in rats. Metab Brain Dis. 1999;14:137–48.

    Article  CAS  PubMed  Google Scholar 

  82. Jolicoeur FB, Rondeau DB, Barbeau A, Wayner MJ. Comparison of neurobehavioral effects induced by various experimental models of ataxia in the rat. Neurobehav Toxicol. 1979;1 Suppl 1:175–8.

    CAS  PubMed  Google Scholar 

  83. Ciccia RM, Langlais PJ. An examination of the synergistic interaction of ethanol and thiamine deficiency in the development of neurological signs and long-term cognitive and memory impairments. Alcohol Clin Exp Res. 2000;24:622–34.

    Article  CAS  PubMed  Google Scholar 

  84. Meador K, et al. Preliminary findings of high-dose thiamine in dementia of Alzheimer’s type. J Geriatr Psychiatry Neurol. 1993;6:222–9.

    Article  CAS  PubMed  Google Scholar 

  85. Mimori Y, Katsuoka H, Nakamura S. Thiamine therapy in Alzheimer’s disease. Metab Brain Dis. 1996;11:89–94.

    Article  CAS  PubMed  Google Scholar 

  86. Jia X, McNeill G, Avenell A. Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials. J Hum Nutr Diet. 2008;21:317–36.

    Article  CAS  PubMed  Google Scholar 

  87. Goodwin JS, Goodwin JM, Garry PJ. Association between nutritional status and cognitive functioning in a healthy elderly population. JAMA. 1983;249:2917–21.

    Article  CAS  PubMed  Google Scholar 

  88. Lee H, Kim HJ, Kim JM, Chang N. Effects of dietary folic acid supplementation on cerebrovascular endothelial dysfunction in rats with induced hyperhomocysteinemia. Brain Res. 2004;996:139–47.

    Article  CAS  PubMed  Google Scholar 

  89. Scileppi KP, Blass JP, Baker HG. Circulating vitamins in Alzheimer’s dementia as compared with other dementias. J Am Geriatr Soc. 1984;32:709–11.

    Article  CAS  PubMed  Google Scholar 

  90. Mizrahi EH, et al. Plasma total homocysteine levels, dietary vitamin B6 and folate intake in AD and healthy aging. J Nutr Health Aging. 2003;7:160–5.

    CAS  PubMed  Google Scholar 

  91. Dangour AD, et al. B-vitamins and fatty acids in the prevention and treatment of Alzheimer’s disease and dementia: a systematic review. J Alzheimers Dis. 2010;22:205–24.

    CAS  PubMed  Google Scholar 

  92. Masuda Y, Kokubu T, Yamashita M, Ikeda H, Inoue S. EGG phosphatidylcholine combined with vitamin B12 improved memory impairment following lesioning of nucleus basalis in rats. Life Sci. 1998;62:813–22.

    Article  CAS  PubMed  Google Scholar 

  93. Tangney CC, Tang Y, Evans DA, Morris MC. Biochemical indicators of vitamin B12 and folate insufficiency and cognitive decline. Neurology. 2009;72:361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Kwok T, et al. Randomized trial of the effect of supplementation on the cognitive function of older people with subnormal cobalamin levels. Int J Geriatr Psychiatry. 1998;13:611–6.

    Article  CAS  PubMed  Google Scholar 

  95. Hvas AM, Juul S, Lauritzen L, Nexo E, Ellegaard J. No effect of vitamin B-12 treatment on cognitive function and depression: a randomized placebo controlled study. J Affect Disord. 2004;81:269–73.

    Article  CAS  PubMed  Google Scholar 

  96. Kruman II, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci. 2002;22:1752–62.

    CAS  PubMed  Google Scholar 

  97. Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002;82:637–72.

    Article  CAS  PubMed  Google Scholar 

  98. Morris MC, et al. Dietary folate and vitamin B12 intake and cognitive decline among community-dwelling older persons. Arch Neurol. 2005;62:641–5.

    Article  PubMed  Google Scholar 

  99. Fioravanti M, et al. Low folate levels in the cognitive decline of elderly patients and the efficacy of folate as a treatment for improving memory deficits. Arch Gerontol Geriatr. 1998;26:1–13.

    Article  CAS  PubMed  Google Scholar 

  100. Bryan J, Calvaresi E, Hughes D. Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr. 2002;132:1345–56.

    CAS  PubMed  Google Scholar 

  101. Sommer BR, Hoff AL, Costa M. Folic acid supplementation in dementia: a preliminary report. J Geriatr Psychiatry Neurol. 2003;16:156–9.

    Article  PubMed  Google Scholar 

  102. Wald DS, Kasturiratne A, Simmonds M. Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials. Am J Med. 2010;123(6):522–7. e522.

    Article  CAS  PubMed  Google Scholar 

  103. Perrig WJ, Perrig P, Stahelin HB. The relation between antioxidants and memory performance in the old and very old. J Am Geriatr Soc. 1997;45:718–24.

    Article  CAS  PubMed  Google Scholar 

  104. Morris MC, Evans DA, Bienias JL, Tangney CC, Wilson RS. Vitamin E and cognitive decline in older persons. Arch Neurol. 2002;59:1125–32.

    Article  PubMed  Google Scholar 

  105. Wengreen HJ, et al. Antioxidant intake and cognitive function of elderly men and women: the Cache county study. J Nutr Health Aging. 2007;11:230–7.

    CAS  PubMed  Google Scholar 

  106. Dangour AD, Sibson VL, Fletcher AE. Micronutrient supplementation in later life: limited evidence for benefit. J Gerontol A Biol Sci Med Sci. 2004;59:659–73.

    Article  PubMed  Google Scholar 

  107. Dysken MW, Sano M, Asthana S, et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VA cooperative randomized trial. JAMA. 2014;311(1):33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wallum BJ, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab. 1987;64:190–4.

    Article  CAS  PubMed  Google Scholar 

  109. Akatsu H, et al. Transition metal abnormalities in progressive dementias. Biometals. 2012;25(2):337–50.

    Article  CAS  PubMed  Google Scholar 

  110. Krikorian R, Eliassen JC, Boespflug EL, Nash TA, Shidler MD. Improved cognitive-cerebral function in older adults with chromium supplementation. Nutr Neurosci. 2010;13:116–22.

    Article  CAS  PubMed  Google Scholar 

  111. Cefalu WT, Wang ZQ, Zhang XH, Baldor LC, Russell JC. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J Nutr. 2002;132:1107–14.

    CAS  PubMed  Google Scholar 

  112. Anderson RA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes. 1997;46:1786–91.

    Article  CAS  PubMed  Google Scholar 

  113. Malar DS, Devi KP. Dietary polyphenols for treatment of Alzheimer’s disease- future research and development. Curr Pharm Biotechnol. 2014;15(4):330–42.

    Article  CAS  PubMed  Google Scholar 

  114. Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med. 2010;31:446–67.

    Article  CAS  PubMed  Google Scholar 

  115. Moyer RA, Hummer KE, Finn CE, Frei B, Wrolstad RE. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: vaccinium, rubus, and ribes. J Agric Food Chem. 2002;50:519–25.

    Article  CAS  PubMed  Google Scholar 

  116. Halvorsen BL, et al. A systematic screening of total antioxidants in dietary plants. J Nutr. 2002;132:461–71.

    CAS  PubMed  Google Scholar 

  117. Saija A, Princi P, D’Amico N, De Pasquale R, Costa G. Effect of Vaccinium myrtillus anthocyanins on triiodothyronine transport into brain in the rat. Pharmacol Res. 1990;22 Suppl 3:59–60.

    Article  PubMed  Google Scholar 

  118. Casadesus G, et al. Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutr Neurosci. 2004;7:309–16.

    Article  CAS  PubMed  Google Scholar 

  119. Joseph JA, Fisher DR, Carey AN. Fruit extracts antagonize Abeta- or DA-induced deficits in Ca2+ flux in M1-transfected COS-7 cells. J Alzheimers Dis. 2004;6:403–11. discussion 443–409.

    PubMed  Google Scholar 

  120. Yang F, et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem. 2005;280:5892–901.

    Article  CAS  PubMed  Google Scholar 

  121. Rinwa P, Kaur B, Jaggi AS, Singh N. Involvement of PPAR-gamma in curcumin-mediated beneficial effects in experimental dementia. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:529–39.

    Article  CAS  PubMed  Google Scholar 

  122. Lao CD, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Baum L, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008;28:110–3.

    Article  PubMed  Google Scholar 

  124. Hamaguchi T, Ono K, Yamada M. REVIEW: curcumin and Alzheimer’s disease. CNS Neurosci Ther. 2010;16:285–97.

    Article  CAS  PubMed  Google Scholar 

  125. Witte AV, Kerti L, Marquiles DS, Floel A. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci. 2014;34(23):7862–70.

    Article  CAS  PubMed  Google Scholar 

  126. Dacks PA, Shineman DW, Fillit HM. Current evidence for the clinical use of long-chain polyunsaturated n-3 fatty acids to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Health Aging. 2013;17(3):240–51.

    Article  CAS  PubMed  Google Scholar 

  127. Oster T, Pillot T. Docosahexaenoic acid and synaptic protection in Alzheimer’s disease mice. Biochim Biophys Acta. 2010;1801:791–8.

    Article  CAS  PubMed  Google Scholar 

  128. Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem Jr N. Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids. 1999;34:S239–43.

    Article  CAS  PubMed  Google Scholar 

  129. Chiu CC, et al. The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:1538–44.

    Article  CAS  PubMed  Google Scholar 

  130. Freund-Levi Y, et al. Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol. 2006;63:1402–8.

    Article  PubMed  Google Scholar 

  131. Quinn JF, et al. Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial. JAMA. 2010;304:1903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mahmoudi MJ, et al. Effect of low dose omega-3 poly unsaturated fatty acids on cognitive status among older people: a double-blind randomized placebo-controlled study. J Diabetes Metab Disord. 2014;13(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. de la Torre JC. Alzheimer disease as a vascular disorder: nosological evidence. Stroke. 2002;33:1152–62.

    Article  PubMed  Google Scholar 

  134. Snowdon DA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun study. JAMA. 1997;277:813–7.

    Article  CAS  PubMed  Google Scholar 

  135. Stephan BC, Brayne C. Vascular factors and prevention of dementia. Int Rev Psychiatry. 2008;20:344–56.

    Article  PubMed  Google Scholar 

  136. Kalaria RN. Comparison between Alzheimer’s disease and vascular dementia: implications for treatment. Neurol Res. 2003;25:661–4.

    Article  PubMed  Google Scholar 

  137. Fernando MS, Ince PG. Vascular pathologies and cognition in a population-based cohort of elderly people. J Neurol Sci. 2004;226:13–7.

    Article  PubMed  Google Scholar 

  138. Luchsinger JA, et al. Aggregation of vascular risk factors and risk of incident Alzheimer disease. Neurology. 2005;65:545–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Dartigues JF, Fabrigoule C, Barberger-Gateau P, Orgogozo JM. Memory, aging and risk factors. Lessons from clinical trials and epidemiologic studies. Therapie. 2000;55:503–5.

    CAS  PubMed  Google Scholar 

  140. Launer LJ. Regional differences in rates of dementia: MRC-CFAS. Lancet Neurol. 2005;4:694–5.

    Article  PubMed  Google Scholar 

  141. Matthews FE, Stephan BC, McKeith IG, Bond J, Brayne C. Two-year progression from mild cognitive impairment to dementia: to what extent do different definitions agree? J Am Geriatr Soc. 2008;56:1424–33.

    Article  PubMed  Google Scholar 

  142. Skoog I, et al. 15-year longitudinal study of blood pressure and dementia. Lancet. 1996;347:1141–5.

    Article  CAS  PubMed  Google Scholar 

  143. Mielke MM, Zandi PP. Hematologic risk factors of vascular disease and their relation to dementia. Dement Geriatr Cogn Disord. 2006;21:335–52.

    Article  PubMed  Google Scholar 

  144. Rocca WA, Petersen RC, Knopman DS, Hebert LE, Evans DA, Hall KS, et al. Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement. 2011;7(1):80–93.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Forette F, et al. Prevention of dementia in randomised double-blind placebo-controlled systolic hypertension in Europe (Syst-Eur) trial. Lancet. 1998;352:1347–51.

    Article  CAS  PubMed  Google Scholar 

  146. Lithell H, et al. The study on cognition and prognosis in the elderly (SCOPE): principal results of a randomized double-blind intervention trial. J Hypertens. 2003;21:875–86.

    Article  CAS  PubMed  Google Scholar 

  147. Curb JD, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic hypertension in the elderly program cooperative research group. JAMA. 1996;276:1886–92.

    Article  CAS  PubMed  Google Scholar 

  148. Lopez-Arrieta JM, Birks J. Nimodipine for primary degenerative, mixed and vascular dementia. Cochrane Database Syst Rev. 2002;3, CD000147.

    PubMed  Google Scholar 

  149. McGuinness B, Todd S, Passmore P, Bullock R. The effects of blood pressure lowering on development of cognitive impairment and dementia in patients without apparent prior cerebrovascular disease. Cochrane Database Syst Rev. 2006;19(2), CD004034.

    Google Scholar 

  150. McGuinness B, Todd S, Passmore P, Bullock R. Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;7(4), CD004034.

    Google Scholar 

  151. McGuinness B, Craig D, Bullock R, Passmore P. Statins for the prevention of dementia. Cochrane Database Syst Rev. 2009;15(2), CD003160.

    Google Scholar 

  152. Zhou B, Teramukai S, Fukushima M. Prevention and treatment of dementia or Alzheimer’s disease by statins: a meta-analysis. Dement Geriatr Cogn Disord. 2007;23:194–201.

    Article  PubMed  CAS  Google Scholar 

  153. Agostini JV, et al. Effects of statin use on muscle strength, cognition, and depressive symptoms in older adults. J Am Geriatr Soc. 2007;55:420–5.

    Article  PubMed  Google Scholar 

  154. Sparks DL, Connor DJ, Sabbagh MN, Petersen RB, Lopez J, Browne P. Circulating cholesterol levels, apolipoprotein E genotype and dementia severity influence the benefit of atorvastatin treatment in Alzheimer’s disease: results of the Alzheimer’s disease cholesterol-lowering treatment (ADCLT) trial. Acta Neurol Scand Suppl. 2006;185:3–7.

    Article  CAS  PubMed  Google Scholar 

  155. Rdzak GM, Abdelghany O. Does insulin therapy for Type 1 diabetes mellitus protect against Alzheimer’s disease? Pharmacotherapy. 2014;34(12):1317–23.

    Article  CAS  PubMed  Google Scholar 

  156. Cook DG, et al. Reduced hippocampal insulin-degrading enzyme in late-onset alzheimer’s disease is associated with the apolipoprotein E-epsilon4 allele. Am J Pathol. 2003;162:313–9.

    Google Scholar 

  157. Bruehl H, et al. Modifiers of cognitive function and brain structure in middle-aged and elderly individuals with type 2 diabetes mellitus. Brain Res. 2009;1280:186–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Censori B, et al. Dementia after first stroke. Stroke. 1996;27:1205–10.

    Article  CAS  PubMed  Google Scholar 

  159. Bourdel-Marchasson I, et al. Characteristics of undiagnosed diabetes in community-dwelling French elderly: the 3C study. Diabetes Res Clin Pract. 2007;76:257–64.

    Article  CAS  PubMed  Google Scholar 

  160. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA. Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol. 2004;61:661–6.

    Article  PubMed  Google Scholar 

  161. Allen KV, Frier BM, Strachan MW. The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol. 2004;490:169–75.

    Article  CAS  PubMed  Google Scholar 

  162. Yaffe K, et al. Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology. 2004;63:658–63.

    Article  CAS  PubMed  Google Scholar 

  163. Areosa SA, Grimley EV. Effect of the treatment of Type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev. 2002:CD003804.

    Google Scholar 

  164. Aggarwal NT, et al. The relation of cigarette smoking to incident Alzheimer’s disease in a biracial urban community population. Neuroepidemiology. 2006;26:140–6.

    Article  PubMed  Google Scholar 

  165. Ott A, et al. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet. 1998;351:1840–3.

    Article  CAS  PubMed  Google Scholar 

  166. Merchant C, et al. The influence of smoking on the risk of Alzheimer’s disease. Neurology. 1999;52:1408–12.

    Article  CAS  PubMed  Google Scholar 

  167. Juan D, et al. A 2-year follow-up study of cigarette smoking and risk of dementia. Eur J Neurol. 2004;11:277–82.

    Article  CAS  PubMed  Google Scholar 

  168. Meyer J, Xu G, Thornby J, Chowdhury M, Quach M. Longitudinal analysis of abnormal domains comprising mild cognitive impairment (MCI) during aging. J Neurol Sci. 2002;201:19–25.

    Article  PubMed  Google Scholar 

  169. Fratiglioni L, Wang HX. Smoking and Parkinson’s and Alzheimer’s disease: review of the epidemiological studies. Behav Brain Res. 2000;113:117–20.

    Article  CAS  PubMed  Google Scholar 

  170. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367–78.

    Article  PubMed  Google Scholar 

  171. Lautenschlager NT, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA. 2008;300:1027–37.

    Article  CAS  PubMed  Google Scholar 

  172. Angevaren M, Aufdemkampe G, Verhaar HJ, Aleman A, Vanhees L. Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database Syst Rev. 2008;3, CD005381.

    PubMed  Google Scholar 

  173. Dishman RK, et al. Neurobiology of exercise. Obesity (Silver Spring). 2006;14:345–56.

    Article  CAS  Google Scholar 

  174. Rockwood K, Middleton L. Physical activity and the maintenance of cognitive function. Alzheimers Dement. 2007;3:S38–44.

    Article  PubMed  Google Scholar 

  175. Ravaglia G, et al. Physical activity and dementia risk in the elderly: findings from a prospective Italian study. Neurology. 2008;70:1786–94.

    Article  CAS  PubMed  Google Scholar 

  176. Kirshner HS. Vascular dementia: a review of recent evidence for prevention and treatment. Curr Neurol Neurosci Rep. 2009;9:437–42.

    Article  PubMed  Google Scholar 

  177. Pohjasvaara T, et al. How complex interactions of ischemic brain infarcts, white matter lesions, and atrophy relate to poststroke dementia. Arch Neurol. 2000;57:1295–300.

    Article  CAS  PubMed  Google Scholar 

  178. Tatemichi TK, et al. Risk of dementia after stroke in a hospitalized cohort: results of a longitudinal study. Neurology. 1994;44:1885–91.

    Article  CAS  PubMed  Google Scholar 

  179. Moroney JT, et al. Risk factors for incident dementia after stroke. Role of hypoxic and ischemic disorders. Stroke. 1996;27:1283–9.

    Article  CAS  PubMed  Google Scholar 

  180. Ewers M, Insel PS, Stern Y, Weiner MW. Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease. Neurology. 2013;80:1194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Valenzuela MJ. Brain reserve and the prevention of dementia. Curr Opin Psychiatry. 2008;21:296–302.

    Article  PubMed  Google Scholar 

  182. Stern Y. What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc. 2002;8:448–60.

    Article  PubMed  Google Scholar 

  183. Verghese J, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med. 2003;348:2508–16.

    Article  PubMed  Google Scholar 

  184. Fratiglioni L, Wang HX, Ericsson K, Maytan M, Winblad B. Influence of social network on occurrence of dementia: a community-based longitudinal study. Lancet. 2000;355:1315–9.

    Article  CAS  PubMed  Google Scholar 

  185. Valenzuela MJ, Sachdev P. Brain reserve and dementia: a systematic review. Psychol Med. 2006;36:441–54.

    Article  PubMed  Google Scholar 

  186. Oswald WD, Rupprecht R, Gunzelmann T, Tritt K. The SIMA-project: effects of 1 year cognitive and psychomotor training on cognitive abilities of the elderly. Behav Brain Res. 1996;78:67–72.

    Article  CAS  PubMed  Google Scholar 

  187. Ball K, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271–81.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Willis SL, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296:2805–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Mahncke HW, et al. Memory enhancement in healthy older adults using a brain plasticity-based training program: a randomized, controlled study. Proc Natl Acad Sci USA. 2006;103:12523–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gates N, Valenzuela M. Cognitive exercise and its role in cognitive function in older adults. Curr Psychiatry Rep. 2010;12:20–7.

    Article  PubMed  Google Scholar 

  191. Troyer AK, Murphy KJ, Anderson ND, Moscovitch M, Craik FI. Changing everyday memory behaviour in amnestic mild cognitive impairment: a randomised controlled trial. Neuropsychol Rehabil. 2008;18:65–88.

    Article  PubMed  Google Scholar 

  192. Rozzini L, et al. Efficacy of cognitive rehabilitation in patients with mild cognitive impairment treated with cholinesterase inhibitors. Int J Geriatr Psychiatry. 2007;22:356–60.

    Article  PubMed  Google Scholar 

  193. Saczynski JS, et al. The effect of social engagement on incident dementia: the Honolulu-Asia aging study. Am J Epidemiol. 2006;163:433–40.

    Article  PubMed  Google Scholar 

  194. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63:530–8.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Tisserand DJ, Visser PJ, van Boxtel MP, Jolles J. The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range. Neurobiol Aging. 2000;21:569–76.

    Article  CAS  PubMed  Google Scholar 

  196. Wolf H, et al. Structural correlates of mild cognitive impairment. Neurobiol Aging. 2004;25:913–24.

    Article  PubMed  Google Scholar 

  197. Markou A, Duka T, Prelevic GM. Estrogens and brain function. Hormones (Athens). 2005;4:9–17.

    Article  Google Scholar 

  198. Sherwin BB. Estrogenic effects on memory in women. Ann N Y Acad Sci. 1994;743:213–30; discussion 230–211.

    Google Scholar 

  199. Murphy DG, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry. 1996;53:585–94.

    Article  CAS  PubMed  Google Scholar 

  200. Caldwell BM, Watson RI. An evaluation of psychologic effects of sex hormone administration in aged women. I. Results of therapy after six months. J Gerontol. 1952;7:228–44.

    Article  CAS  PubMed  Google Scholar 

  201. Portin R, et al. Serum estrogen level, attention, memory and other cognitive functions in middle-aged women. Climacteric. 1999;2:115–23.

    Article  CAS  PubMed  Google Scholar 

  202. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. JAMA. 1998;279:688–95.

    Article  CAS  PubMed  Google Scholar 

  203. Barrett-Connor E, Laughlin GA. Endogenous and exogenous estrogen, cognitive function, and dementia in postmenopausal women: evidence from epidemiologic studies and clinical trials. Semin Reprod Med. 2009;27:275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Maki PM, Zonderman AB, Resnick SM. Enhanced verbal memory in nondemented elderly women receiving hormone-replacement therapy. Am J Psychiatry. 2001;158:227–33.

    Article  CAS  PubMed  Google Scholar 

  205. Lokkegaard E, et al. The influence of hormone replacement therapy on the aging-related change in cognitive performance. Analysis based on a Danish cohort study. Maturitas. 2002;42:209–18.

    Article  CAS  PubMed  Google Scholar 

  206. LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA. 2001;285:1489–99.

    Article  CAS  PubMed  Google Scholar 

  207. Matthews K, Cauley J, Yaffe K, Zmuda JM. Estrogen replacement therapy and cognitive decline in older community women. J Am Geriatr Soc. 1999;47:518–23.

    Article  CAS  PubMed  Google Scholar 

  208. Zandi PP, et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache county study. JAMA. 2002;288:2123–9.

    Article  CAS  PubMed  Google Scholar 

  209. Sorwell KG, Urbanski HF. Dehydroepiandrosterone and age-related cognitive decline. Age (Dordr). 2010;32:61–7.

    Article  CAS  Google Scholar 

  210. Labrie F, et al. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids. 1998;63:322–8.

    Article  CAS  PubMed  Google Scholar 

  211. Karishma KK, Herbert J. Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression. Eur J Neurosci. 2002;16:445–53.

    Article  CAS  PubMed  Google Scholar 

  212. Wolf OT, Kudielka BM, Hellhammer DH, Hellhammer J, Kirschbaum C. Opposing effects of DHEA replacement in elderly subjects on declarative memory and attention after exposure to a laboratory stressor. Psychoneuroendocrinology. 1998;23:617–29.

    Article  CAS  PubMed  Google Scholar 

  213. Giurgea C. The “nootropic” approach to the pharmacology of the integrative activity of the brain. Cond Reflex. 1973;8:108–15.

    CAS  PubMed  Google Scholar 

  214. Malykh AG, Sadaie MR. Piracetam and piracetam-like drugs: from basic science to novel clinical applications to CNS disorders. Drugs. 2010;70:287–312.

    Article  CAS  PubMed  Google Scholar 

  215. Waegemans T, et al. Clinical efficacy of piracetam in cognitive impairment: a meta-analysis. Dement Geriatr Cogn Disord. 2002;13:217–24.

    Article  CAS  PubMed  Google Scholar 

  216. Flicker L, Grimley Evans J. Piracetam for dementia or cognitive impairment. Cochrane Database Syst Rev. 2000:CD001011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Isaacson MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Haynes, N., Seifan, A., Isaacson, R.S. (2016). Prevention of Dementia. In: Boltz, M., Galvin, J. (eds) Dementia Care. Springer, Cham. https://doi.org/10.1007/978-3-319-18377-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18377-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18376-3

  • Online ISBN: 978-3-319-18377-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics