Skip to main content

Role of Iron in the Pathogenesis of Endometriosis

  • Chapter
Endometriosis

Part of the book series: SpringerBriefs in Reproductive Biology ((BRIEFSREPROBIO))

  • 1670 Accesses

Abstract

Iron can accumulate in the peritoneal fluid, macrophages, and endometrial lesions in women with endometriosis. The process begins as erythrocytes are phagocytized by macrophages, releasing hemoglobin into the peritoneal fluid where it can form a complex with haptoglobin or be catalyzed by hemeoxygenase-1 to produce free iron. The free iron can be taken up by iron storage and transporting proteins such as ferritin and transferrin, which can lead to iron accumulation within macrophages or lesions. Iron overload can lead to the dysregulation of genes that code for molecules specific to endometriosis and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kobayashi, H., Yamada, Y., Kanayama, S., Furukawa, N., Noguchi, T., Haruta, S., et al. (2009). The role of iron in the pathogenesis of endometriosis. Gynecological Endocrinology, 25(1), 39–52.

    Article  CAS  PubMed  Google Scholar 

  2. Eisenstein, R. S. (2000). Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annual Review of Nutrition, 20, 627–662.

    Article  CAS  PubMed  Google Scholar 

  3. Winzerling, J. J., & Pham, D. Q. (2006). Iron metabolism in insect disease vectors: Mining the Anopheles gambiae translated protein database. Insect Biochemistry and Molecular Biology, 36(4), 310–321.

    Article  CAS  PubMed  Google Scholar 

  4. Le, N. T., & Richardson, D. R. (2002). The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochimica et Biophysica Acta, 1603(1), 31–46.

    CAS  PubMed  Google Scholar 

  5. Ryter, S. W., Si, M., Lai, C. C., & Su, C. Y. (2000). Regulation of endothelial heme oxygenase activity during hypoxia is dependent on chelatable iron. American Journal of Physiology. Heart and Circulatory Physiology, 279(6), H2889–H2897.

    CAS  PubMed  Google Scholar 

  6. Yoshiki, N., Kubota, T., & Aso, T. (2001). Identification of heme oxygenase in human endometrium. The Journal of Clinical Endocrinology and Metabolism, 86(10), 5033–5038.

    Article  CAS  PubMed  Google Scholar 

  7. Matsuzaki, S., Canis, M., Pouly, J. L., Botchorishvili, R., Dechelotte, P. J., & Mage, G. (2007). Both GnRH agonist and continuous oral progestin treatments reduce the expression of the tyrosine kinase receptor B and mu-opioid receptor in deep infiltrating endometriosis. Human Reproduction (Oxford, England), 22(1), 124–128.

    Article  CAS  Google Scholar 

  8. Rossi, M., Sharkey, A. M., Vigano, P., Fiore, G., Furlong, R., Florio, P., et al. (2005). Identification of genes regulated by interleukin-1beta in human endometrial stromal cells. Reproduction, 130(5), 721–729.

    Article  CAS  PubMed  Google Scholar 

  9. Burney, R. O., Talbi, S., Hamilton, A. E., Vo, K. C., Nyegaard, M., Nezhat, C. R., et al. (2007). Gene expression analysis of endometrium reveals progesterone resistance and candidate susceptibility genes in women with endometriosis. Endocrinology, 148(8), 3814–3826.

    Article  CAS  PubMed  Google Scholar 

  10. Harrison-Findik, D. D. (2007). Role of alcohol in the regulation of iron metabolism. World Journal of Gastroenterology, 13(37), 4925–4930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lousse, J. C., Defrere, S., Van Langendonckt, A., Gras, J., Gonzalez-Ramos, R., Colette, S., et al. (2009). Iron storage is significantly increased in peritoneal macrophages of endometriosis patients and correlates with iron overload in peritoneal fluid. Fertility and Sterility, 91(5), 1668–1675.

    Article  PubMed  Google Scholar 

  12. Gaulier, A., Jouret-Mourin, A., & Marsan, C. (1983). Peritoneal endometriosis. Report of a case with cytologic, cytochemical and histopathologic study. Acta Cytologica, 27(4), 446–449.

    CAS  PubMed  Google Scholar 

  13. Stowell, S. B., Wiley, C. M., Perez-Reyes, N., & Powers, C. N. (1997). Cytologic diagnosis of peritoneal fluids. Applicability to the laparoscopic diagnosis of endometriosis. Acta Cytologica, 41(3), 817–822.

    Article  CAS  PubMed  Google Scholar 

  14. Arumugam, K. (1994). Endometriosis and infertility: Raised iron concentration in the peritoneal fluid and its effect on the acrosome reaction. Human Reproduction (Oxford, England), 9(6), 1153–1157.

    CAS  Google Scholar 

  15. Arumugam, K., & Yip, Y. C. (1995). De novo formation of adhesions in endometriosis: The role of iron and free radical reactions. Fertility and Sterility, 64(1), 62–64.

    CAS  PubMed  Google Scholar 

  16. Knutson, M., & Wessling-Resnick, M. (2003). Iron metabolism in the reticuloendothelial system. Critical Reviews in Biochemistry and Molecular Biology, 38(1), 61–88.

    Article  CAS  PubMed  Google Scholar 

  17. Van Langendonckt, A., Casanas-Roux, F., & Donnez, J. (2002). Iron overload in the peritoneal cavity of women with pelvic endometriosis. Fertility and Sterility, 78(4), 712–718.

    Article  PubMed  Google Scholar 

  18. Martinez-Roman, S., Balasch, J., Creus, M., Fabregues, F., Carmona, F., Vilella, R., et al. (1997). Transferrin receptor (CD71) expression in peritoneal macrophages from fertile and infertile women with and without endometriosis. American Journal of Reproductive Immunology, 38(6), 413–417.

    Article  CAS  PubMed  Google Scholar 

  19. Mathur, S. P., Lee, J. H., Jiang, H., Arnaud, P., & Rust, P. F. (1999). Levels of transferrin and alpha 2-HS glycoprotein in women with and without endometriosis. Autoimmunity, 29(2), 121–127.

    Article  CAS  PubMed  Google Scholar 

  20. Yamaguchi, K., Mandai, M., Toyokuni, S., Hamanishi, J., Higuchi, T., Takakura, K., et al. (2008). Contents of endometriotic cysts, especially the high concentration of free iron, are a possible cause of carcinogenesis in the cysts through the iron-induced persistent oxidative stress. Clinical Cancer Research, 14(1), 32–40.

    Article  CAS  PubMed  Google Scholar 

  21. Van Langendonckt, A., Casanas-Roux, F., Eggermont, J., & Donnez, J. (2004). Characterization of iron deposition in endometriotic lesions induced in the nude mouse model. Human Reproduction (Oxford, England), 19(6), 1265–1271.

    Article  Google Scholar 

  22. Defrere, S., Van Langendonckt, A., Vaesen, S., Jouret, M., Gonzalez Ramos, R., Gonzalez, D., et al. (2006). Iron overload enhances epithelial cell proliferation in endometriotic lesions induced in a murine model. Human Reproduction (Oxford, England), 21(11), 2810–2816.

    Article  CAS  Google Scholar 

  23. Defrere, S., Lousse, J. C., Gonzalez-Ramos, R., Colette, S., Donnez, J., & Van Langendonckt, A. (2008). Potential involvement of iron in the pathogenesis of peritoneal endometriosis. Molecular Human Reproduction, 14(7), 377–385.

    Article  CAS  PubMed  Google Scholar 

  24. Van Langendonckt, A., Casanas-Roux, F., & Donnez, J. (2002). Oxidative stress and peritoneal endometriosis. Fertility and Sterility, 77(5), 861–870.

    Article  PubMed  Google Scholar 

  25. Gazvani, R., & Templeton, A. (2002). Peritoneal environment, cytokines and angiogenesis in the pathophysiology of endometriosis. Reproduction, 123(2), 217–226.

    Article  CAS  PubMed  Google Scholar 

  26. Nair, A. S., Nair, H. B., Lucidi, R. S., Kirchner, A. J., Schenken, R. S., Tekmal, R. R., et al. (2008). Modeling the early endometriotic lesion: Mesothelium-endometrial cell co-culture increases endometrial invasion and alters mesothelial and endometrial gene transcription. Fertility and Sterility, 90(4 Suppl), 1487–1495.

    Article  PubMed  Google Scholar 

  27. Shigetomi, H., Higashiura, Y., Kajihara, H., & Kobayashi, H. (2012). A potential link of oxidative stress and cell cycle regulation for development of endometriosis. Gynecological Endocrinology, 28(11), 897–902.

    Article  CAS  PubMed  Google Scholar 

  28. Yamada, Y., Shigetomi, H., Onogi, A., Haruta, S., Kawaguchi, R., Yoshida, S., et al. (2011). Redox-active iron-induced oxidative stress in the pathogenesis of clear cell carcinoma of the ovary. International Journal of Gynecological Cancer, 21(7), 1200–1207.

    PubMed  Google Scholar 

  29. Papanikolaou, G., & Pantopoulos, K. (2005). Iron metabolism and toxicity. Toxicology and Applied Pharmacology, 202(2), 199–211.

    Article  CAS  PubMed  Google Scholar 

  30. Kristiansen, M., Graversen, J. H., Jacobsen, C., Sonne, O., Hoffman, H. J., Law, S. K., et al. (2001). Identification of the haemoglobin scavenger receptor. Nature, 409(6817), 198–201.

    Article  CAS  PubMed  Google Scholar 

  31. Deiss, A. (1983). Iron metabolism in reticuloendothelial cells. Seminars in Hematology, 20(2), 81–90.

    CAS  PubMed  Google Scholar 

  32. Madsen, M., Moller, H. J., Nielsen, M. J., Jacobsen, C., Graversen, J. H., van den Berg, T., et al. (2004). Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region. The Journal of Biological Chemistry, 279(49), 51561–51567.

    Article  CAS  PubMed  Google Scholar 

  33. Buechler, C., Ritter, M., Orso, E., Langmann, T., Klucken, J., & Schmitz, G. (2000). Regulation of scavenger receptor CD163 expression in human monocytes and macrophages by pro- and antiinflammatory stimuli. Journal of Leukocyte Biology, 67(1), 97–103.

    CAS  PubMed  Google Scholar 

  34. Hogger, P., & Sorg, C. (2001). Soluble CD163 inhibits phorbol ester-induced lymphocyte proliferation. Biochemical and Biophysical Research Communications, 288(4), 841–843.

    Article  CAS  PubMed  Google Scholar 

  35. Sharpe-Timms, K. L., Piva, M., Ricke, E. A., Surewicz, K., Zhang, Y. L., & Zimmer, R. L. (1998). Endometriotic lesions synthesize and secrete a haptoglobin-like protein. Biology of Reproduction, 58(4), 988–994.

    Article  CAS  PubMed  Google Scholar 

  36. Levy, A. P., Levy, J. E., Kalet-Litman, S., Miller-Lotan, R., Levy, N. S., Asaf, R., et al. (2007). Haptoglobin genotype is a determinant of iron, lipid peroxidation, and macrophage accumulation in the atherosclerotic plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(1), 134–140.

    Article  CAS  PubMed  Google Scholar 

  37. Piva, M., & Sharpe-Timms, K. L. (1999). Peritoneal endometriotic lesions differentially express a haptoglobin-like gene. Molecular Human Reproduction, 5(1), 71–78.

    Article  CAS  PubMed  Google Scholar 

  38. Piva, M., Horowitz, G. M., & Sharpe-Timms, K. L. (2001). Interleukin-6 differentially stimulates haptoglobin production by peritoneal and endometriotic cells in vitro: A model for endometrial-peritoneal interaction in endometriosis. The Journal of Clinical Endocrinology and Metabolism, 86(6), 2553–2561.

    CAS  PubMed  Google Scholar 

  39. Van Langendonckt, A., Casanas-Roux, F., Dolmans, M. M., & Donnez, J. (2002). Potential involvement of hemoglobin and heme in the pathogenesis of peritoneal endometriosis. Fertility and Sterility, 77(3), 561–570.

    Article  PubMed  Google Scholar 

  40. Tolosano, E., & Altruda, F. (2002). Hemopexin: Structure, function, and regulation. DNA and Cell Biology, 21(4), 297–306.

    Article  CAS  PubMed  Google Scholar 

  41. Muller-Eberhard, U., Javid, J., Liem, H. H., Hanstein, A., & Hanna, M. (1968). Plasma concentrations of hemopexin, haptoglobin and heme in patients with various hemolytic diseases. Blood, 32(5), 811–815.

    CAS  PubMed  Google Scholar 

  42. Wagener, F. A., van Beurden, H. E., von den Hoff, J. W., Adema, G. J., & Figdor, C. G. (2003). The heme-heme oxygenase system: A molecular switch in wound healing. Blood, 102(2), 521–528.

    Article  CAS  PubMed  Google Scholar 

  43. Wolfler, M. M., Meinhold-Heerlein, I. M., Henkel, C., Rath, W., Neulen, J., Maass, N., et al. (2013). Reduced hemopexin levels in peritoneal fluid of patients with endometriosis. Fertility and Sterility, 100(3), 777–781.

    Article  PubMed  Google Scholar 

  44. Toyokuni, S. (2009). Role of iron in carcinogenesis: Cancer as a ferrotoxic disease. Cancer Science, 100(1), 9–16.

    Article  CAS  PubMed  Google Scholar 

  45. Sharp, P., & Srai, S. K. (2007). Molecular mechanisms involved in intestinal iron absorption. World Journal of Gastroenterology, 13(35), 4716–4724.

    Article  CAS  PubMed  Google Scholar 

  46. Richter, G. W. (1957). A study of hemosiderosis with the aid of electron microscopy; with observations on the relationship between hemosiderin and ferritin. The Journal of Experimental Medicine, 106(2), 203–218.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Jansen, R. P., & Russell, P. (1986). Nonpigmented endometriosis: Clinical, laparoscopic, and pathologic definition. American Journal of Obstetrics and Gynecology, 155(6), 1154–1159.

    Article  CAS  PubMed  Google Scholar 

  48. Vulpe, C. D., Kuo, Y. M., Murphy, T. L., Cowley, L., Askwith, C., Libina, N., et al. (1999). Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature Genetics, 21(2), 195–199.

    Article  CAS  PubMed  Google Scholar 

  49. Crichton, R. R., Wilmet, S., Legssyer, R., & Ward, R. J. (2002). Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. Journal of Inorganic Biochemistry, 91(1), 9–18.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Gupta, S., Harlev, A., Agarwal, A., Gokul, S., Kumaresan, D. (2015). Role of Iron in the Pathogenesis of Endometriosis. In: Endometriosis. SpringerBriefs in Reproductive Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-18308-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18308-4_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18307-7

  • Online ISBN: 978-3-319-18308-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics